Abstract
Endoplasmic reticulum (ER) plays a central role in the synthesis of proteins and their post-translational modification by folding newly synthesized proteins through the formation of disulfide bonds, which is necessary for their final stable conformational state. ER homeostasis is stressed when the influx of newly synthesized unfolded or misfolded polypeptide chains exceeds the ER capacity for repair and refolding. ER stress in diabetes can be caused by various factors that inhibit protein folding, such as glucose, nonesterified cholesterol, oxidized phospholipids, saturated fatty acids, and ROS. Chronic ER stress leads to the death of pancreatic β-cells, increases hyperglycemia, and is the main etiology of diabetes. Atherosclerosis (AS) is a chronic inflammatory disease that underlies the pathology of ischemic cardiovascular and cerebrovascular diseases. It has been documented that both endoplasmic reticulum (ER) stress and NLRP3 inflammasomes influence the progression of AS. The ER stress response in endothelial cells leads to inflammation and cell death in diabetes-related vascular diseases. ER stress also plays a key role in the onset of atherosclerosis in diabetes, which is a major consequence of endothelial dysfunction. Several independent risk factors for cardiovascular diseases, namely hyperhomocysteinemia, obesity, and dyslipidemia, as well as hyperglycemia, are also associated with ER stress, which indicates its integrating function in atherogenesis. The etiological role of low-level tissue inflammation in the formation of insulin resistance and β-cell dysfunction in type 2 diabetes is commonly recognized. Among innate immune receptors, NLRP3 plays a critical role in tissue inflammation associated with lipid overload or obesity. The research showed that ER stress is involved in inflammation and that ER plays a key role in the activation of NLRP3-inflammasomes, which trigger secretion of proinflammatory cytokines, such as IL-1β and IL-18. Metformin, an AMPK activator, inhibits ER stress and restores endothelial cell function in diabetes. Metformin inhibits NLRP3 inflammasome activation under ER stress through suppression of IL-6 and MCP-1 production induced by high glucose levels, lower TXNIP expression, and activation of autophagy via AMPK.
This is a preview of subscription content, access via your institution.
REFERENCES
- 1
Agouni, A., Tual-Chalot, S., Chalopin, M., et al., Hepatic protein tyrosine phosphatase 1B (PTP1B) deficiency protects against obesity-induced endothelial dysfunction, Biochem. Pharmacol., 2014, vol. 92, pp. 607–617. https://doi.org/10.1016/j.bcp.2014.10.008
- 2
Bronner, D.N., Abuaita, B.H., Chen, X., et al., Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage, Immunity, 2015, vol 43, pp. 451–462. https://doi.org/10.1016/j.immuni.2015.08.008
- 3
Chai, T.F., Hong, S.Y., He, H., et al., A potential mechanism of metformin-mediated regulation of glucose homeostasis: inhibition of thioredoxin-interacting protein (TXNIP) gene expression, Cell Signal., 2012, vol. 24, pp. 1700–1705.https://doi.org/10.1016/j.cellsig.2012.04.017
- 4
Cheang, W.S., Tian, X.Y., Wong, W.T., et al., Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5' adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway, Arterioscler. Thromb. Vase Biol., 2014, vol. 34, no. 4, pp. 830–836. https://doi.org/10.1161/ATVBAHA.113.301938
- 5
Chen, X., Guo, X., Ge, Q., et al., ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis, Oxid. Med. Cell Longev., 2019a, p. 3462530. https://doi.org/10.1155/2019/3462530
- 6
Chen, C., Kassan, A., Castaceda, D., et al., Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway, Hypertens. Res., 2019b, vol. 42, no. 7, pp. 960–969. https://doi.org/10.1038/s41440-019-0212-z
- 7
Chen, Y., Wang, J.J., Li, J., et al., Activating transcription factor 4 mediates hyperglycaemia-induced endothelial inflammation and retinal vascular leakage through activation of STAT3 in a mouse model of type 1 diabetes, Diabetologia, 2012, vol. 55, no. 9, pp. 2533–2545. https://doi.org/10.1007/sOO125-012-2594-1
- 8
Cnop, M., Toivonen, S., Igoillo-Esteve, M., and Salpea, P., Endoplasmic reticulum stress and eIF2a phosphorylation: the Achilles heel of pancreatic β cells, Mol. Metab., 2017, vol. 6, no. 9, pp. 1024–1039. https://doi.org/10.1016/j.molmet.2017.06.001
- 9
Davies, P.F., Civelek, M., Fang, Y., and Fleming, I., The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo, Cardiovasc. Res., 2013, vol. 99, no. 2, pp. 315–327. https://doi.org/10.1093/cvr/cvtl01
- 10
de la Roche, M., Hamilton, C., Mortensen, R., et al., Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation, J. Cell Biol., 2018, vol. 217, pp. 3560–3576. https://doi.org/10.1083/jcb.201709057
- 11
Dong, Y., Zhang, M., Wang, S., et al., Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo, Diabetes, 2010, vol. 59, no. 6, pp. 1386–1396. https://doi.org/10.2337/db09-1637
- 12
Flamment, M., Hajduch, E., Ferre, P., and Foufelle, F., New insights into ER stress-induced insulin resistance, Trends Endocrinol. Metab., 2012, vol. 23, pp. 381–390.https://doi.org/10.1016/j.tem.2012.06.003
- 13
Fonseca, S.G., Gromada, J., and Urano, F., Endoplasmic reticulum stress and pancreatic beta-cell death, Trends Endocrinol. Metab., 2011, vol. 22, no. 7, pp. 266–274.https://doi.org/10.1016/j.tem.2011.02.008
- 14
Galan, M., Kassan, M., Choi, S.K., et al., A novel role for epidermal growth factor receptor tyrosine kinase and its downstream endoplasmic reticulum stress in cardiac damage and microvascular dysfunction in type 1 diabetes mellitus, Hypertension, 2012, vol. 60, pp. 71–80. https://doi.org/10.1161/HYPERTENSIONAHA.11.192500
- 15
Galan, M., Kassan, M., Kadowitz, P.J., et al., Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction, Biochim. Biophys. Acta, 2014, vol.1843, pp. 1063–1075.https://doi.org/10.1016/j.bbamcr.2014.02.009
- 16
Gardner, B.M., Pincus, D., Gotthardt, K., et al., Endoplasmic reticulum stress sensing in the unfolded protein response, Cold Spring Harb. Perspect. Biol., 2013, vol. 5, art. a013169. https://doi.org/10.1101/cshperspect.a013169
- 17
Ghemrawi, R., Battaglia-Hsu, S.F., and Arnold, C., Endoplasmic reticulum stress in metabolic disorders, Cells, 2018, vol. 7, no. 6, p. 63. https://doi.org/10.3390/cells7060063
- 18
He, Y., Hara, H., and Nunez, G., Mechanism and regulation of NLRP3 inflammasome activation, Trends Biochem. Sci., 2016, vol. 41, pp. 1012–1021. doi . 09.002https://doi.org/10.1016/j.tibs.2016
- 19
Hossain, G.S., Lynn, E.G., Maclean, K.N., et al., Deficiency of TDAG51 protects against atheroclerosis by modulating apoptosis, cholesterol efflux, and peroxiredoxin-1 expression, J. Am. Heart Assoc., 2013, vol. 2, no. 3, e000134. https://doi.org/10.1161/JAHA.113.000134
- 20
Hu, M., Phan, F., Bourron, O., et al., Steatosis and NASH in type 2 diabetes, Biochimie, 2017, vol. 143, pp. 37–41. https://doi.org/10.1016/j.biochi.2017.10.019
- 21
Hur, K.Y. and Lee, M.S., New mechanisms of metformin action: focusing on mitochondria and the gut, J. Diabetes Invest., 2015, vol. 6, no. 6, pp. 600–609. https://doi.org/10.1111/jdi.12328
- 22
Inagi, R., Ishimoto, Y., and Nangaku, M., Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease, Nat. Rev. Nephrol., 2014, vol. 10, no. 7, pp. 369–378. https://doi.org/10.1038/nrneph.2014.67
- 23
Incalza, M.A., D’Oria, R., Natalicchio, A., et al., Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases, Vasc. Pharmacol., 2018, vol. 100, pp. 1–19. https://doi.org/10.1016/j.vph.2017.05.005
- 24
Jamwal, S. and Sharma, S., Vascular endothelium dysfunction: a conservative target in metabolic disorders, Inflamm. Res., 2018, vol. 67, pp. 391–405. https://doi.org/10.1007/s00011-018-1129-8
- 25
Kim, S., Joe, Y., Jeong, S.O., et al., Endoplasmic reticulum stress is sufficient for the induction of IL-1 beta production via activation of the NF-kappa B and inflammasome pathways, Innate Immun., 2014, vol. 20, pp. 799–815. https://doi.org/10.1177/1753425913508593
- 26
Kornfeld, O.S., Hwang, S., Disatnik, M.H., et al., Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases, Circ. Res., 2015, vol. 116, pp. 1783–1799. https://doi.org/10.1161/CIRCRESAHA.116.305432
- 27
Lebeaupin, C., Proics, E., de Bieville, C.H., et al., ER stress induces NLRP3 inflammasome activation and hepatocyte death, Cell Death Dis., 2015, vol. 6, e1879. https://doi.org/10.1038/cddis.2015.248
- 28
Lee, H.M., Kim, J.J., Kim, H.J., et al., Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes, Diabetes, 2013, vol. 62, pp. 194–204. https://doi.org/10.2337/db12-0420
- 29
Lenna, S., Han, R., and Trojanowska, M., Endoplasmic reticulum stress and endothelial dysfunction, IUBMB Life, 2014, vol. 66, no. 8, pp. 530–537. https://doi.org/10.1002/iub.1292
- 30
Lerner, A.G., Upton, J.P., Praveen, P.V., et al., IRE1 a induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress, Cell Metab., 2012, vol. 16, pp. 250–264. https://doi.org/10.1016/j.cmet.2012.07.007
- 31
Li, A., Zhang, S., Li, J., et al., Metformin and resveratrol inhibit drp1-mediated mitochondrial fission and prevent ER stress-associated NLRP3 inflammasome activation in the adipose tissue of diabetic mice, Mol. Cell Endocrinol., 2016, vol. 434, pp. 36–47. https://doi.org/10.1016/j.mce.2016.06.008
- 32
Liang, B., Wang, S., Wang, Q., et al., Aberrant endoplasmic reticulum stress in vascular smooth muscle increases vascular contractility and blood pressure in mice deficient of AMP-activated protein kinase-α 2 in vivo, Arterioscler. Thromb. Vasc. Biol., 2013, vol. 33, pp. 595–604. https://doi.org/10.1161/ATVBAHA.112.300606
- 33
Lisa, S., Domingo, B., Martinez, J., et al., Failure of prion protein oxidative folding guides the formation of toxic transmembrane forms, J. Biol. Chem., 2012, vol. 287, pp. 36693–36701. https://doi.org/10.1074/jbc.M112.398776
- 34
Liu, Q., Zhang, D., Hu, D., et al., The role of mitochondria in NLRP3 infiammasome activation, Mol. Immunol., 2018, vol. 103, pp. 115–124. https://doi.org/10.1016/j.molimm.2018.09.010
- 35
Lytrivi, M., Castell, A.L., Poitout, V., and Cnop, M., Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes, J. Mol. Biol., 2020, vol. 432, no. 5, pp. 1514–1534. https://doi.org/10.1016/j.jmb.2019.09.016
- 36
Maamoun, H., Zachariah, M., McVey, J.H., et al., Heme oxygenase (HO)-1 induction prevents endoplasmic reticulum stress-mediated endothelial cell death and impaired angiogenic capacity, Biochem. Pharmacol., 2017, vol. 127, pp. 46–59. https://doi.org/10.1016/j.bcp.2016.12.009
- 37
Maamoun, H., Abdelsalam, S.S., Zeidan, A., et al., Endoplasmic reticulum stress: a critical molecular driver of endothelial dysfunction and cardiovascular disturbances associated with diabetes, Int. J. Mol. Sci., 2019a, vol. 20, no. 7, p. 1658. https://doi.org/10.3390/ijms20071658
- 38
Maamoun, H., Benameur, T., Pintus, G., et al., Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: a focus on the protective roles of heme oxygenase (HO)-1, Front. Physiol., 2019b, vol. 10, p. 70. https://doi.org/10.3389/fphys.2019.00070
- 39
Misawa, T., Takahama, M., Kozaki, T., et al., Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome, Nat. Immunol., 2013, vol. 14, pp. 454–460. https://doi.org/10.1038/ni.2550
- 40
Mohan, S., Rani, P.R.M., Brown, L., et al., Endoplasmic reticulum stress: a master regulator of metabolic syndrome, Eur. J. Pharmacol., 2019, vol. 860, p. 172553. https://doi.org/10.1016/j.ejphar.2019.172553
- 41
Muller, C., Salvayre, R., Negre-Salvayre, A., and Vindis, C., HDLs inhibit endoplasmic reticulum stress and autophagic response induced by oxidized LDLs, Cell Death Differ., 2011, vol. 18, no. 5, pp. 817–828. https://doi.org/10.1038/cdd.2010.149
- 42
Oslowski, C.M., Hara, T., O’Sullivan-Murphy, B., et al., Thioredoxin-interacting protein mediates ER stress-induced B cell death through initiation of the inflammasome, Cell Metab., 2012, vol. 16, pp. 265–273. https://doi.org/10.1016/j.cmet.2012.07.005
- 43
Owen, C., Lees, E.K., Grant, L., et al., Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice, Diabetologia, 2013, vol. 56, pp. 2286–2296. https://doi.org/10.1007/s00125-013-2992-z
- 44
Ozcan, L. and Tabas, I., Role of endoplasmic reticulum stress in metabolic disease and other disorders, Ann. Rev. Med., 2012, vol. 63, pp. 317–328.
- 45
Pushkarev, V.M., Sokolova, L.K., Pushkarev, V.V., and Tronko, M.D., The role of AMPK and mTOR in the development of insulin resistance and type 2 diabetes. The mechanism of metformin action, Probl. Endocrin. Pathol., 2016, vol. 3, pp. 77–90.
- 46
Shi, C.S., Shenderov, K., Huang, N.N., et al., Activation of autophagy by inflammatory signals limits IL-1b production by targeting ubiquitinated inflammasomes for destruction, Nat. Immunol., 2012, vol. 13, pp. 255–263. https://doi.org/10.1038/ni.2215
- 47
Sokolova, L.K., Pushkarev, V.M., Belchina, Y.B., et al., Effect of combined treatment with insulin and metformin on 5'AMP-activated protein kinase activity in lymphocytes of diabetic patients, Dopov. Nac. Akad. Nauk Ukr., 2018, vol. 5, pp. 100–104. https://doi.org/10.15407/dopovidi2018.05.100
- 48
Sokolova, L.K., Pushkarev, V.M., Pushkarev, V.V., et al., Diabetes mellitus and atherosclerosis. The role of inflammatory processes in pathogenesis, Mezhdunarod. Endokrinol. Zh., 2017, vol. 13, no. 7, pp. 486–498.
- 49
Son, S.M. Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes, Diabetes Metab. J., 2012, vol. 36, pp. 190–198. https://doi.org/10.4093/dmj.2012.36.3.190
- 50
Tabas, I., The role of endoplasmic reticulum stress in the progression of atherosclerosis, Circ. Res., 2010, vol. 107, no. 7, pp. 839–850. doi . 224766https://doi.org/10.1161/CIRCRESAHA.110
- 51
Talty, A., Deegan, S., Ljujic, M., et al., Inhibition of IRE1alpha RNase activity reduces NLRP3 inflammasome assembly and processing of pro-IL1beta, Cell Death Dis., 2019, vol. 10, p. 622. https://doi.org/10.1038/s41419-019-1847-z
- 52
Thon, M., Hosoi, T., Yoshii, M., and Ozawa, K., Leptin induced GRP78 expression through the PI3K-mTOR pathway in neuronal cells, Sci. Rep., 2014, vol. 4, p. 7096. https://doi.org/10.1038/srep07096
- 53
Tronko, N.D., Pushkarev, V.M., Sokolova, L.K., et al., Molecular Mechanisms of Pathogenesis of Diabetes and Its Complications, Kyiv: Medkniga, 2018.
- 54
Tufanli, O., Telkoparan Akillilar, P., Acosta-Alvear, D., et al., Targeting IRE1 with small molecules counteracts progression of atherosclerosis, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. E1395–E1404. https://doi.org/10.1073/pnas.1621188114
- 55
Vandanmagsar, B., Youm, Y.H., Ravussin, A., et al., The NLRP3 inflammasome instigate obesity-induced inflammation and insulin resistance, Nat. Med., 2011, vol. 15, pp. 179–188. https://doi.org/10.1038/nm.2279
- 56
Walter, P. and Ron, D., The unfolded protein response: from stress pathway to homeostatic regulation, Science, 2011, vol. 334, pp. 1081–1086. https://doi.org/10.1126/science.1209038
- 57
Wang, Y.I., Bettaieb, A., Sun, C., et al., Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM)-1 expression via differential regulation of endoplasmic reticulum stress, PLoS One, 2013, vol. 8, no. 10, e78322. https://doi.org/10.1371/journal.pone.0078322
- 58
Ye, J., Mechanisms of insulin resistance in obesity, Front. Med., 2013, vol. 7, no. 1, pp. 14–24. https://doi.org/10.1007/s11684-013-0262-6
- 59
Zhou, J., Massey, S., Story, D., and Li, L., Metformin: an old drug with new applications, Int. J. Mol. Sci., 2018, vol. 19, no. 10, p. 2863. https://doi.org/10.3390/ijms19102863
- 60
Zhou, R., Tardivel, A., Thorens, B., et al., Thioredoxin-interacting protein links oxidative stress to inflammasome activation, Nat. Immunol., 2010, vol 11, pp. 136–140. https://doi.org/10.1038/ni.1831
- 61
Zhou, Y., Tong, Z., Jiang, S., et al., The roles of endoplasmic reticulum in NLRP3 inflammasome activation, Cell, 2020, vol. 9, no. 5, p. 1219. https://doi.org/10.3390/cells9051219
- 62
Zoungas, S., Chalmers, J., Ninomiya, T., et al., Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds, Diabetologia, 2012, vol. 55, no. 3, pp. 636–643. https://doi.org/10.1007/s00125-011-2404-1
Funding
The article was prepared within the budget funding of the National Academy of Medical Sciences of Ukraine according to the plan of research work of the Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Sciences of Ukraine.
Author information
Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.
Additional information
Translated by K. Lazarev
About this article
Cite this article
Pushkarev, V.V., Sokolova, L.K., Kovzun, O.I. et al. The Role of Endoplasmic Reticulum Stress and NLRP3 Inflammasomes in the Development of Atherosclerosis. Cytol. Genet. 55, 331–339 (2021). https://doi.org/10.3103/S0095452721040113
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords:
- diabetes
- atherosclerosis
- endoplasmic reticulum stress
- NLRP3-inflammasomes
- metformin