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ABSTRACT   

The given data on the optical arrangement, in which the coordinate distributions of the real and imaginary component of the 
elements of the Jones matrix of optically thin polycrystalline layers are determined. Algorithms are presented and an 
experimental method for measuring the real and imaginary component of Jones-matrix images is analyzed. The 
experimental results of the study of statistical, correlation, and fractal parameters, which characterize the real component of 
the Jones-matrix image of polycrystalline networks of flat layers of the main types of human amino acids, are presented.  
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1. INTRODUCTION  
The actual direction in laser polarimetric diagnostics1,2,3 of biological objects is the development of matrix methods4,5,6, 
which provide the most complete information about the polycrystalline structure7,8,9 of films of biological fluids10, 11, 12 of 
human organs of different morphological structure and physiological state13,14,15. 

Our work is devoted to the development and experimental testing of the Johns-matrix mapping method for 
polycrystalline layers of basic amino acids of the human body in order to obtain objective criteria for the differential 
diagnosis of pathological conditions. 

2. OPTICAL SCHEME OF JONES-MATRIX MAPPING OF FILMS OF OPTICAL-
ANISOTROPIC BIOLOGICAL FLUIDS 

Figure 1 shows the optical scheme of a polarimeter for measuring the totality of the coordinate distributions of the real 
and imaginary components of the Jones matrix of biological fluids. The illumination was carried out in parallel (∅ = 
104μm) by a He-Ne laser beam (λ = 0.6328μm, W = 5.0mW). The polarization illuminator consists of quarter-wave 
plates 3; 5 and polarizer 4, which ensures the formation of a laser beam with an arbitrary azimuth or polarization 
ellipticity 0° ≤ β0 ≤ 90° 

Polarization images of films of biological fluids were projected by micro-lens 7 (4× magnification) on to the 
photosensitive area (800×600 pixels) of a CCD camera 10, which provided a measuring range of structural image 
elements for the following sizes 2-2000μm. The experimental conditions were selected so as to virtually eliminate the 
spatial-angular aperture filtration when imaging films of biological tissues. This was ensured by matching the angular 
characteristics of the light scattering indicatrices with samples of films of biological fluids Ω ≈ 16° and the angular 
aperture of the micro-lens (∆ω = 90°). Here Ω is the angular cone of indicatrices, in which 98% of the total energy of the 
scattered radiation is concentrated. Image analysis of films of biological fluids was carried out using a polarizer 9 and a 
quarter-wave plate 8. 
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Figure. 1. The optical scheme of the polarimeter, where 1 - He-Ne laser; 2 - collimator; 3 - stationary quarter-wave plate; 5, 
8 - mechanical movable quarter-wave plates; 4, 9 - polarizer and analyzer, respectively; 6 - the object of study; (b) 7 - micro 
lens; 10 - CCD camera; 11 - personal computer 

3. JONES-MATRIX IMAGES OF POLYCRYSTALLINE NETWORKS OF OPTICALLY 
THIN LAYERS OF AMINO ACIDS 

In order to obtain the objective criteria for the polarization manifestations of the optical anisotropy of polycrystalline 
networks of various types, we carried out a comprehensive study of the real component of the coordinate distributions of 
the elements of the Jones matrix R11(m × n) and R12;21(m × n), characterizing mainly the manifestations of the 
orientational ρ and phase δ structure of an ensemble of liquid amino acid crystals13,14,18. 

Figure 2 presents polarization images of the crystalline layers of the main types of amino acids of the human body. 

We selected polycrystalline layers of three types of amino acids: glycine, methionine, and proline. This choice of objects 
for these compounds are the main "building" material for the formation of protein structures of biological structures. 

Figures 3 to 8 show a series of experimentally measured Jones-matrix images of the real component of the "orientation" 
R11(m × n) and "phase" R12;21(m × n) elements and three-dimensional reconstructions of their values N(R11), N(R12;21), 
autocorrelation functions G11(∆x), G12;21(∆x) logarithmic spectral dependences LgJ(G11); LgJ(G12;21) of coordinate 
distributions of the values of the real component of the matrix elements of polycrystalline layers of the main types of 
glycine amino acids (Fig. 3 and Fig. 4), methionine (Fig. 5 and Fig. 6) and proline (Fig. 7 and Fig. 8), respectively12. 

The results of the study of the actual component of the Jones-matrix images of the elements of a set of polycrystalline 
layers of the main types of human amino acids showed: 

1. The orientational structure of the directions of the optical axes of the network of partial crystals of amino acids has a 
significant effect. This is indicated by a wide range of changes (0 ≤ R11 ≤ 1) in the eigenvalues of the matrix element 
R11(m × n) of the crystalline layers of the main types of amino acids (Fig. 3, Fig. 5, Fig. 7  Fragments (a)). Moreover, all 
the coordinate distributions of the real component of the “orientational” elements of the Jones matrix are individual for 
polycrystalline networks with different geometric constructions (Fig. 3, Fig. .5, Fig. 7. Fragments (b)). 

2. The differences between the coordinate distributions of the real component of the "phase" R12;21 element (Fig. 4, Fig. 
6, Fig. 8, fragments (a)) of polycrystalline amino acid networks of different biochemical composition are not so 
expressive (Fig. 4, Fig. 6, Fig. 8 Fragments (b)) as for Jones-matrix images of "orientation" elements. Such a similarity, 
in our opinion, is associated with similar values of the birefringence index of the amino acids glycine, methionine, and 
proline. 

3. The autocorrelation functions G11;12;21(∆x) of the coordinate distributions of the real component of the elements of the 
Jones matrix of crystalline amino acid layers with dendritic and spherolitic geometry are falling dependencies with 
pronounced fluctuations of eigenvalues (Fig. 3 and Fig. 5 fragments (c)). 

4. The sets of values of the real component, "orientational" Rik(m × n), of the elements of the Jones matrix R12;21(m × n) 
are practically fractal; for the "phase" matrix element - multifractal. The corresponding logarithmic dependences 
LgJ(G11) are characterized by a constant angle of inclination over the entire range of variation of the geometric 
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dimensions of partial crystals (Fig. 3, Fig. 5 and Fig. 7, fragments (d)). Dependencies LgJ(G12;21) are characterized by 
broken approximating curves with two angles of inclination (Fig. 4, Fig. 6, and Fig. 8, fragments (d)). In our opinion, this 
fact can be associated with multiple scale and coordinate ordered changes in the orientation of the optical axes of partial 
crystals of amino acids with a simultaneous multiple change in the phase  δ period. 

Asparagin  Cysteine  Glycine  

   
Globulin Glutamine Isoleucine 

   
Methionine Ornithine Proline 

   
Threonine  Tryptophan  Valin  

   
Figure 2. Polycrystalline networks of basic types of human amino acids 
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Figure 3. Coordinate (a), probabilistic (b), correlation 

(c) and self-similar (d) structure of the actual 
component of the element of the Jones matrix R11 
of a polycrystalline network of a glycine layer 

Figure 4. Coordinate (a), probabilistic (b), correlation (c) 
and self-similar (d) structure of the real component 
of the element of the Jones matrix R12;21 of the 
polycrystalline network of the glycine layer 

  
Figure 5. Coordinate (a), probabilistic (b), correlation 

(c) and self-similar (d) structure of the real 
component of the element of the Jones matrix R11 
of the polycrystalline network of a mitionine layer 

Figure 6. Coordinate (a), probabilistic (b), correlation (c) 
and self-similar (d) structure of the actual component 
of the element of the Jones matrix R12;21 of the 
polycrystalline network of the mitionine layer 

  
Figure 7. Coordinate (a), probabilistic (b), correlation 

(c) and self-similar (d) structure of the real 
component of the element of the Jones matrix R11 
of a polycrystalline network of a proline layer 

Figure 8. Coordinate (a), probabilistic (b), correlation (c) 
and self-similar (d) structure of the real component 
of the element of the Jones matrix R12;21 of a 
polycrystalline network of a proline layer 
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The results of the quantitative analysis of the values and ranges of statistical, correlation, and spectral moments 
characterizing the coordinate distributions Rik(m × n) of the real component of the elements of the Jones matrix of 
polycrystalline layers of the main types of amino acids are shown in Table 1. 

Table 1 Statistical (M, σ, A, E), correlation (Ki = 1;2;3;4), spectral (Si = 1;2;3;4) parameters of Jones-matrix images Rik(m × n) of 
polycrystalline amino acid layers 

R11(m × n) R12;21(m × n) 
Glycine  

M 0.41 K1 0.44 S1 0.56 M 0.46 K1 0.48 S1 0.53 
σ 0.21 K2 0.14 S2 0.19 σ 0.19 K2 0.14 S2 0.14 
A 0.86 K3 1.31 S3 0.62 A 0.24 K3 0.29 S3 0.43 
E 0.63 K4 3.16 S4 0.83 E 0.17 K4 1.19 S4 0.37 

Methionine  
M 0.31 K1 0.52 S1 0.48 M 0.51 K1 0.51 S1 0.5 
σ 0.15 K2 0.11 S2 0.13 σ 0.24 K2 0.11 S2 0.11 
A 0.53 K3 0.57 S3 0.47 A 0.18 K3 0.24 S3 0.31 
E 0.68 K4 2.12 S4 0.39 E 0.12 K4 0.91 S4 0.27 

Proline  
M 0,39 K1 0,45 S1 0,56 M 0,48 K1 0,48 S1 0,52 
σ 0,28 K2 0,1 S2 0,13 σ 0,32 K2 0,07 S2 0,09 
A 0,12 K3 0,24 S3 0,48 A 0,12 K3 0,36 S3 0,21 
E 0,09 K4 1,38 S4 0,27 E 0,09 K4 1,15 S4 0,18 

 

4. CONCLUSIONS 
Data on a laser micropolarimeter and its optical arrangement are given, in which the coordinate distributions of the real 
and imaginary component of the elements of the Jones matrix of optically thin polycrystalline layers are determined.  
The experimental results of the study of statistical, correlation and fractal parameters characterizing the actual 
components of the Jones-matrix images of polycrystalline networks of basic types of human amino acids are presented. 
Analysis of the results revealed that: 

• The entire set of 1st, 4th order statistical, correlation, and spectral moments, which characterize the coordinate 
distributions of the real component of the elements of the Jones matrix, has individual sets of values that depend on the 
optical-geometric parameters of polycrystalline networks of amino acids. 

• There is a satisfactory correlation between the data of computer simulation and the experimental study of the structure 
of the real component of Jones-matrix images.  

• The disordering of the directions of the optical axes of partial crystals of amino acids is manifested in such changes in 
quantitative parameters: a decrease in the magnitudes of the statistical moments of the 3rd and 4th orders of the 
coordinate distribution of the real component of the “orientation” element of the Jones matrix according to the following 
geometry of polycrystalline networks "; Attenuation of oscillations of the autocorrelation functions of Jones-matrix 
images, as well as a decrease in the corresponding values th asymmetry ( ) and kurtosis ( ) of such dependences, the 
growth of the 3rd and 4th order spectral moments, which characterize the logarithmic dependences of the power spectra 
of the coordinate distribution of the real component of the "orientational" element of the Jones matrix. 

The range of differences between the values of statistical, correlation and spectral moments of the 1st - 4th orders 
characterizing the distribution of the values of the real component of the "phase" elements of the Jones matrix of 
polycrystalline amino acid networks of various types times less than in the case of similar quantitative parameters for 
"orientational" Jones-matrix images. 
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