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Korteveg-de-Vries Soliton Equation 
in Pulse Wave Modelling 

S. V. Vasylyuk, D. V. Zaitsev, and A. V. Brytan 

Abstract In the early stages of blood flow research, the widely used Bernoulli equa-
tion was applied to describe blood behavior in large vessels, while the Poiseuille 
formula was used to estimate capillary flow behavior within a single vessel, 
accounting for the significant resistance of blood. These expressions were derived 
assuming a steady laminar incompressible flow, with fluid particles moving along 
constant streamlines and the velocity profile in the radial direction u(r) remaining 
constant in time and not changing in the axial flow direction at a given point [1]. 
However, such models fail to capture the emergence and movement of arterial 
pulse waves, which are a critical and versatile physiological phenomenon that have 
garnered significant interest for investigation and modeling. In this section, we will 
explore the use of soliton theory for modeling pulse waves. The underlying concept 
is that the behavior of a real pulse wave shares many similarities with solitons. In 
the realm of mathematics, solitons are defined as localized stationary solutions to 
nonlinear partial differential equations or their generalizations, such as differential-
difference or integro-differential equations. Notably, various physical situations and 
phenomena can be described by the same equations, including the Korteweg-de Vries 
equation, the Sine-Gordon equation, and the Schrödinger nonlinear equation. Specif-
ically, the elastic interaction between solitons and local perturbations plays a crucial 
role in this context. The method of pulse waves modeling based on soliton solution 
of Korteweg-de Vries equation is considered in this work, and test calculations in 
Maple 8 environment are made. The results obtained allow us to speak about the
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applicability of soliton theory for pulse wave modeling. It is planned to analyze the 
possibility of further application of N-soliton solution for medical purposes. 

1 Introduction 

Historically the beginning of the investigation of blood flow takes off the imple-
mentation famous Bernoulli equation for describing blood behavior in large vessels. 
Also for initial estimating of capillary flow behavior with significant blood resis-
tance inside single vessel Poiseuille formula is used. Both expressions are obtained 
for a case of the velocity profile calculating for a steady laminar incompressible 
flow, by solving the force balance applied to the fluid. In this assumption, the fluid 
particles move along constant streamlines while the velocity profile in the radial 
direction u(r) does not change in the axial flow direction and for a certain point 
it is constant in time [1]. However, such types of models cannot allow to describe 
the emergence and subsequent movement of arterial pulse waves. By the way, the 
importance and versatility of this physiological phenomenon cause the significant 
interest in its investigation and modeling [2]. 

From the physical point of view, blood flow is a rather complex process; many 
researchers even call it the third mode of flow. Difficulties in modeling this process 
are caused by many factors: both purely “physical” (e.g., the fact that blood itself 
is non-Newtonian fluid, despite it flows through blood vessels) and the need to take 
into account various regulatory functions. For this reason, most models based on the 
theory of mathematical hemodynamics are quite complicated and difficult to apply. 

There is a huge amount of mathematical models for behavior modeling of arterial 
pulse wave. Actually, this set can be divided into two branches. First is applied to 
the initiation and propagation of pulse wave in aorta and cardiovascular system in 
general. One of the simplest models in this area is the Windkessel model [3] which 
gives the expression for pressure in aorta during cardiac cycle as a function of cardiac 
stroke time dependence form. This is also known as two element’s model or analog 
model. According to the form of mathematical apparatus used in this model, it is 
possible to draw analogy between blood and electric circuit. This idea became a basis 
of consideration of cardiovascular system as analog of electric circuit. One of the 
classic models is the model proposed by Westerhof [4]. Westerhof has interpreted 
the pressure and flow pulses as complex waves consisting of a forward traveling and 
a backward traveling component. The forward wave is associated with the ejection 
of blood from the heart and the backward wave is associated with physical reflec-
tions caused by the mechanical discontinuities in the arterial tree. In the diastolic 
phase, both waves are considered to have destructive superposition, whereas in the 
systolic phase, both waves are considered to have constructive superposition. The 
constructive superposition can also explain the increase of peak pressure of the wave-
form during its propagation in some arteries which is referred to as steepening. Such 
representation of cardiovascular system further also was developed into approach of 
lamped [5, 6] and distributed [7] parameter system One of the main goals of such
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modeling is obtaining a realistic and detailed pulse wave profile during cardiac cycle 
in aorta and explain its further propagation. The use of this approach makes it possible 
to simplify the consideration of such an effect as the expansion of the vessel lumen 
during the movement of a pulse wave. 

But, if we consider the blood flow and wave propagation in a separate vessel, the 
application of the hydrodynamic equation becomes a more convenient and rigorous 
approach [8]. Simultaneously for completing this system of equations, it is necessary 
to add the elasticity equation for tube wall motion under varying internal pressure. 
The vessel walls are often assumed to be Hookean material, namely linear relation 
between stress and strain. However, taking into account the interaction of blood 
flow with a deformable vessel wall significantly complicates the distribution of this 
problem, which forces us to use various model representations [9]. 

This part considers the approach of modeling pulse waves using soliton theory. 
The basic idea is that the nature of a real pulse wave is very similar to the properties 
of solitons. The central role is played by the properties of the elastic interaction 
between solitons and solitons with local perturbations [10–12]. 

2 Properties of Solitons. The Possibility of Using KdV 
Equation to Describe the Pulse Wave 

Soliton is a localized stationary or stationary on average perturbation of a homoge-
neous or spatially periodic nonlinear medium [10]. Up to the beginning of the 1960s, 
soliton was called a soliton wave—a wave packet of a constant shape, propagating 
with a steady speed over the surface of a heavy liquid of a finite depth and in plasma. 
Nowadays, many different physical objects fall underneath the definition of soliton. 
The first classification of soliton can be made according to the number of spatial 
dimensions, along which the stationary perturbation of a nonlinear medium is local-
ized. The one-dimensional soliton includes classical soliton waves in liquids, domain 
walls in ferro- and antiferromagnetics, 2p-pulses and envelope solitons in nonlinear 
optics [13–15]. 

In mathematical terms, solitons are localized stationary solutions of nonlinear 
partial differential equations or their generalizations (differential-difference, integro-
differential, etc., equations). In many cases different physical situations and 
phenomena are described by the same equations, e.g., the Korteweg-de Vries equa-
tion, the Sine–Gordon equation, the Schrödinger nonlinear equation, the Kadomtsev– 
Petviashvili equation [10–14]. Linear equations (except the one-dimensional wave 
equation) have no localized stationary solutions. Solitons are essentially nonlinear 
objects whose behavior and properties are fundamentally different from the behavior 
of wave packets of small amplitude. The difference is especially strong if the soliton 
has a topological charge; i.e., if the configuration of the wave field in the presence of 
the soliton is topologically different from the configuration of the unperturbed state. 
So, a number of equations having soliton solutions belong to the class of equations
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where the inverse scattering problem is applicable and most of them are integrable 
Hamiltonian systems [15–18]. 

In [10], the process of fluid flow through an elastic thin-walled tube is considered. 
The nonlinear differential equations of these processes are derived; the modeling of a 
solitary (pulse wave) is performed on the basis of the Korteweg-de Vries models and 
the modified nonlinear Schrödinger equation. The main advantage of these models 
is that the pulse wave propagation process is considered quite deeply when they 
are derived. These models describe only some of the phenomena observed in the 
cardiovascular system due to the complexity of the blood flow process. 

Here we consider the pulse wave without taking into account the processes of 
blood flow regulation; we consider the pulse wave as the propagation of a solitary 
(pulse) wave in an elastic thin-walled tube. Based on this, we chose the Korteweg-de 
Vries equation as a model: 

ut + 6uux + uxxx  = 0. (1) 

The dimensional equation KdF for the velocity u(t, x) for perturbation in a channel 
with a rectangular cross section has the form. 

Equation (1), as one of the partial solutions, has the so-called soliton solution of 
the form: 

u(t, x) = A 

ch2[b(x − vt)] 
, (2) 

in which A, b and v are parameters determined by the direct substitution (2) in (1). 
In this case, A and v have the dimension of velocity (v is the speed of the soliton 
wave), and b has the dimension of length. 

In Eq. (1), h is the dimensional depth of the channel. As for the speed u0, which 
is included in (1), there are two versions of its physical content. 

This is the speed of its own flow in the channel, which is considered a given value. 
In the case of the cardiovascular system of its own speed, independent of the system 
itself, no, so this content is not suitable for speed u0. 

This is the speed that is a consequence of the desired speed u(t, x) and can be 
interpreted as the speed of capture (speed of entrainment). It must be defined together 
with the solution u(t, x) and in this sense is a certain analog of eigenvalue. This case 
will be considered as one that forms the blood flow. 

We will simulate the pulse wave with a soliton solution of the KdF equation. Since 
no one has deduced the KdF equation for a channel with a round cross section, we 
will use a simple analogy, as a result of which we can postulate the equation: 

ut + uux + u0Suxxx  = 0, (3) 

in which S is the cross-sectional area of the aorta in the immediate vicinity of the 
heart (hereinafter we can take into account that SS can be a function of u due to
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vascular elasticity, and velocity u0 can be a function of x in the transition from aorta 
to arteries, capillaries, etc.). 

For solution (2), we consistently find: 

ut = 2Abv 
sh[b(x − vt)] 
ch3[b(x − vt)]

; 

uux = −2A2 b 
sh[b(x − vt)] 
ch5[b(x − vt)]

; 

uxxx  = −8Ab3 
sh[b(x − vt)] 
ch3[b(x − vt)] 

+ 24Ab3 
sh[b(x − vt)] 
ch5[b(x − vt)] 

. 

Substituting the right-hand sides of these three relations in (3), we find the 
equation:

{
2Abv − 8Ab3 u0S

} sh[b(x − vt)] 
ch3[b(x − vt)] 

+ {
24Ab3 u0S − 2A2 b

} sh[b(x − vt)] 
ch5[b(x − vt)] 

= 0, 

which can be satisfied by equating to zero both curly braces. As a result, we obtain 
two ratios: 

v − 4b2 u0S = 0; (4) 

12b2 u0S − A = 0, (5) 

which includes four unknown quantities: A, b, v, and u0. Equation (4) makes it 
possible to immediately find the blood flow velocity u0, which is stimulated by the 
soliton velocity v: 

u0 = v 
4Sb2 

. (6) 

Substituting this in Eq. (5), we can find the amplitude factor A: 

A = 3v. (7) 

Now only two values remain undefined: the pulse rate of the soliton v and the 
parameter b, which determines the width of the soliton. 

As for the parameter b, it is quite obvious from Eq. (6) that in the general case it 
can be sought in the form: 

b = 
β √
S 
, (8)
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where β is a dimensionless indefinite parameter that can be interpreted as a dimen-
sionless representation of factor b. Taking into account (8), the relation (6) takes the 
form: 

u0 = v 
4β2 

. (9) 

Equation (9) shows that the parameter β satisfies the condition β >  1 2 , since the 
blood flow velocity u0 is always less than the pulse velocity of the soliton v. 

Solution (2), taking into account (7) and (8) takes the form: 

u(t, x) = 3v 

ch2
(
β x−vt √

S

) . (10) 

We will determine the two remaining parameters (β and v) based on known 
physiological facts. 

In particular, it is known that the pulse velocity of the soliton v in the aorta (at the 
exit of the heart) is 5-8 m/s [1-4] (while the blood flow velocity u0 in it is 0.5-1 m/s 
[1-4] (I found the figure in [1-4]). That is, the pulse rate v at the exit of the heart is 
10/6 times greater than the current velocity u0. For certainty, we will use the value 
(v/u0) = 16, which corresponds to the pulse rate of the soliton v = 8 m/s.  

β = 
1 

2 

/
v 
u0 

, 

Therefore, using the formula, obtained from (9), we can find: β = 2. 
The last thing left to do is check the results, knowing the normal heart rate—1 

beat per second. This means that between two consecutive pulse waves in the form 
of a soliton (between two heartbeats) the period should be: T = 1 s. The test comes 
down to the fact that with such a pulse, the solitons should not intersect with great 
accuracy (then the condition of separation (solitude) of the soliton wave is met). To 
perform this test, use the solution (10). 

Before we put this in (10) x = 0, on the grounds that the point of exit of the aorta 
from the heart will be considered the origin. Then from (10) we obtain a special (not 
arbitrary) soliton-like boundary condition: 

u(t, 0) = 3v 

ch2
(

βvt √
S

) , (11) 

which in this consideration is considered to form a physiologically healthy heart 
rhythm, and any deviations from this limit condition will lead to arrhythmias (more 
on this later). If we put t = T in the argument of this boundary condition, then this 
argument takes the form:
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βvT √
S 

. (12) 

The only value in this argument that has not yet been discussed is the cross section 
S of the artery directly at the exit of the heart (at the point x = 0). For it, we use 
the value S ~ 4  × 10−4 m2. Then the value of argument (12) can be estimated by 
substituting the numerical values of all quantities: β = 2, v = 8 m/s,  T = 1 s,  S = 4. 
As a result, we will have 

βvT √
S 

= 800. 

If we use the analytical or graphical representation of the hyperbolic cosine, it is 
obvious that as the value of argument (12) increases, the function ch (x) increases 
in proportion to ex. That is, for the value of ch (800) → ∞, or 1/(ch2(800) → 0) 
obtained here. This means that the solution (10) in the form of a sequence of one-
soliton pulse waves at the obtained parameters is physically correct, because with a 
good margin provides separation of each soliton, as well as blood flow velocity u0 
= 0.5 m/s at the beginning of the aorta. 

If the boundary condition (11) is violated, i.e., it ceases to be soliton-like, then 
other solutions of Eq. (3) are realized: multi-soliton solutions with different pulse 
velocities v, or solutions in the form of cnoidal waves. The latter, however, also 
require a special boundary condition. 

3 Soliton Solution of the Korteweg-de Vries Equation 
by Perturbation Method 

The Korteweg-de Vries equation is considered: 

ut + 6uux + uxxx  = 0 (13) 

In [10, 11], the method of forming the N-soliton solution of this equation is 
presented. The general solution of the Korteweg-de Vries equation consists of a 
soliton and a non-soliton part. In our case, we consider a solution in which the 
local perturbations (non-soliton part) are negligibly small. That is, we are building a 
somewhat idealized model that does not take into account small local perturbations. 
Hirota [11] showed that in general the N-soliton solution has the form: 

u = 2 
d2 

dx2 
ln F, (14) 

where F is the determinant of some matrix [11].
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Substituting (14) into (13), once integrating and assuming the integration constant 
equal to zero, we obtain: 

Fxt  F − Fx Ft + Fxxxx  F − 4Fxxx  Fx + 3F2 
xx  = 0. (15) 

For further analysis, it is convenient to enter the operator: 

Dm 
x D

n 
t ab = (∂x − ∂x ')m (∂x − ∂x ')n a(x, t)b

(
x ', t '

)// x
' = x 
t ' = t 

. (16) 

So, Eq. (15) can be rewritten as:

(
Dx Dt + D4 

x

)
F · F = 0. (17) 

Next, suppose that the function F could be represented as a formal series: 

F = 1 + ε f (1) + ε2 f (2) +  · · ·  , (18) 

where 

f (1) = 
N∑ 

i=1 

eηi , ηi = ki x − ωi t + η0 
i , (19) 

where ki , ωi , η  (0) i —are constants. 
In the case of the Korteweg-de Vries equation, this formal series ends. Indeed, 

substituted (18) into (17), we found

(
Dx Dt + D4 

x

)(
1 + ε f (1) + ε2 f 2 +  · · ·)(1 + ε f (1) + ε2 f 2 +  · · ·) = 0 

And equated to zero, the coefficients for each degree of ε, we obtained 

O(1): 0 = 0 (20a) 

O(ε): 2(∂x ∂t + ∂4 
x

)
f (1) = 0 (20b) 

O
(
ε2

): 2(∂x ∂t + ∂4 
x

)
f (2) = −(

Dx Dt + D4 
x

)
f (1) f (1) (20c) 

O
(
ε3

): 2(∂x ∂t + ∂4 
x

)
f (3) = −2

(
Dx Dt + D4 

x

)
f (1) f (2) . (20d) 

Equation (20b) is a homogeneous equation. As a solution of this equation, we 
took Eq. (19). If we try to continue the calculations of the next parts of the series, 
starting with solution Eq. (7) for an arbitrary random N, we could encounter the
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analytical difficulties. More often, we can obtain equations solutions for N = 1, 2, 
and then hypothesize the structure of the solution for an arbitrary random N and 
prove it by induction method. For N = 1 f (1) = eη1 . Then it follows from Eq. (8b) 
that ω1 = −k3 1 . We could obtain f (2) from the relation (8c), which reduces to(
∂x ∂t + ∂4 

x

)
f (2) = 0. 

So f 2 = 0. and the series sequence breaks off. Therefore, for N = 1 we have: 

F1 = 1 + eη1 , ω1 = −k3 1, u = 
k2 1 
2 
sech2 

1 

2

(
k1x − k3 1 t + η (0) 1

)

For N = 2, we take Eq. (20b) as a solution 

f (1) = eη1 + eη2 , ηi = ki x − k3 i t + η (0) i 

Then (20c) reduces to the equation: 

2
(
∂x ∂t + ∂4 

x

)
f (2) = −2

(
(k1 − k2)(−ω1 + ω2) + (k1 − k2)4

)
eη1+η2 

That is have a solution [3] 

f (2) = eη1+η2+A12 eAi j  =
(
ki − k j 
ki + k j

)2 

(21) 

(note that k1 /= k2). Substituting f (1) , f (2) in (20d), we make sure that the right-hand 
side of (8d) is zero, so let’s take it f (3) = 0. Thus, for N = 2 

F2 = 1 + eη1 + eη2 + eη1+η2+A12 

The function u = 2d2(ln F2)/dx2 corresponds to the two-soliton solution of the 
Korteweg-de Vries equation. Performing similar calculations for N = 3, we obtain: 

F3 = 1 + eη1 + eη2 + eη1+η2+A12 + eη1+η2+A13 + eη2+η3+A23 + eη1+η2+η3+A12+A13+A23 

(22) 

where the coefficients Ai j  are determined by Formula (21) (Function u dependence 
of the coordinate is obtained on the basis of Eqs. (14) and (22) is shown on Fig. 1).

Based on the above, it is hypothesized that the structure of the general N-soliton 
solution has the form [3]: 

FN =
∑ 

μ=0,1 

exp 

⎛ 

⎝ 
N∑ 

i=1 

μi ηi + 
N∑ 

1≤i < j 

μi μ j Ai j  

⎞ 

⎠,
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Fig. 1 Function 
u dependence of the 
coordinate is obtained on the 
basis of Eqs. (14) and  (22)

where the sum of μ runs on all sets μi , i = 1, . . . ,  N . Note that μi , i = 
1, . . . ,  N —they are associated with the phase shift of solitons during scattering. 

4 Application of the Theory of Solitons to Detailed 
Modeling of a Pulse Wave 

It is assumed that the pulse wave is a set of pulses interacting with each other in 
time. Since a soliton is a solitary wave that elastically interacts with arbitrary local 
perturbations, it makes sense to consider the system of interacting solitons as a model. 
That is, we put the correspondence between: 1 pulse—for soliton. So, the N-soliton 
solutions of the Korteweg-de Vries equation are used as the analytical form of soliton 
waves [10]. 

u = 2 
d2 

dx2 
ln FN 

The potential u is a complex function represented as a combination of exponential 
functions with base e. The obtained solution u includes 3N parameters, through which 
variables ηi = ki x + ωi t − h(0) 

i are determined, where ki , ωi , η  (0) i are the parameters 
of this system. 

The following properties of solitons were used: 

(1) The amplitude of the ith soliton, which does not closely interact with other 
solitons, is directly proportional to the corresponding parameter ki, namely 

umaxi = 
1 

2 
k2 i . 

(2) The argument of the point of maximum of the ith soliton is determined by the 
following expression:
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xmaxi = 
−ωi t + h(0) 

i 

ki 
. 

(3) The velocity in phase c is defined as the ratio of the coefficients at x and t. For  
the ith soliton, it is equal. 

ci = ωi
/
ki 

For this system, all phase velocities are considered to be the same, since we 
assume that the real pulse wave does not change in time or, at least, for some 
period of time. That is c1 = c2 =  · · ·  =  cN 

Using these properties, we obtain a system of equations as in [3]: 

⎧ 
⎪⎨ 

⎪⎩ 

1 
2 k

2 
i = ui , i = 1, N ; 

−−ωi t+h(0) 
i 

ki
= xi , i = 1, N 

ωi 
ki 

= ωi+1 

ki+1 
; i = 1, N − 1 

As the values of the local maxima, we take the values of the coordinates of the 
vertices of each “hump” of the real pulse wave obtained experimentally. 

5 The Soliton Theory Application to Intermittent 
Pneumatic Compression; Influence on Thrombus Release 

The resulting system consists of 3N − 1 equations, and we have 3N unknowns; 
therefore, one of the parameters we choose arbitrarily. Take ω1 = 1, then this system 
is solved definitely. Solving this system, we could obtain the solution of Eq. (1) that 
is agreed with the theory in [10] ideas of applying the apparatus of mathematical 
modeling in medicine of pulse waves and in pneumatic device. 

A recent survey of healthcare practitioners in North China revealed that the main 
concern with intermittent pneumatic compression (IPC)—supply is the fear of a 
thrombus release due to the soliton waves appearing in veins. This was expected by 
35% of respondents [18]. And this is actually one of the first objections to discuss 
when getting acquainted with IPC in Ukraine. To assess the incidence of symptomatic 
pulmonary embolism (PE) in patients undergoing IPC therapy we performed a liter-
ature review searching the MEDLINE database with no language restrictions from 
January 1, 2017, until December 31, 2020. We consider two scenarios: when IPC 
starts after the onset of thrombosis, and when thrombosis occurs after IPC starts. 

The first option is more often in unfavorable conditions, when an adequate diag-
nosis of thrombosis meets difficulties. These can be cases with mute blood clots, with 
low scores on the thrombotic risk scale, when it is not possible to perform routine 
ultrasound diagnostics, or when some vessels are less visible on the sensor.
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Table 1 Incidence of symptomatic PE in patients undergoing IPC therapy 

Patients with IPC Patients without IPC 

Total Symptomatic PE cases Total Symptomatic PE cases 

Neurosurgery, 
neurology [20, 21] 

3870 10 (0.26%) 3218 37 (1.15%) 

Orthopedic, 
traumatology [22–24] 

607 2 (0.33%) 1238 15 (1.21%) 

Oncology [25–27] 688 5 (0.73%) 370 7 (1.9%) 

Other [27, 28] 20,324 6 (0.03%) 10,819 6 (0.06%) 

Total 25,489 23 (0.09%) 15,645 65 (0.42%) 

In 2015, the CLOTS-3 study report appeared. In stroke, thromboprophylaxis by 
IPC begins post-factum, when the thrombotic risk is already increasing. Although 
the authors excluded patients with symptoms of pre-existing thrombosis, the risk of 
having a thrombus was not entirely low. Initial ultrasound was not performed, and 
the control one was unable to fully visualize the veins in almost half of the patients. 
Commenting on this, the authors noted: “There was a concern that the application 
of IPC to patients who may already have a deep vein thrombosis might displace 
the thrombus and increase the risk of PE. However, this potential risk has not been 
documented in the randomized controlled trials so far. We have not identified any 
case reports that provide convincing evidence that this has occurred” [19]. 

The second scenario is more typical when the IPC is used for thromboprophylaxis. 
We identified nine trials with 40,667 participants, and the main results are presented 
in Table 1. 

Although thrombosis is more common with IPC than with heparin, dangerous 
complications such as clinical or fatal PE occur in less than 1% of cases. Moreover, 
some sources [20, 21, 24, 28], show that the risk of PE with heparin may be higher than 
with IPC. This is probably because the IPC mimics physical activity. A thrombus that 
grows during IPC therapy is adapted to motor load, while the anatomical structure of a 
“heparin” thrombus may not be strong enough for soliton fluctuations. Another reason 
may be that during IPC, the thrombus progresses mainly in those veins unreachable 
to the external mechanical pressure. Therefore, IPC therapy just does not interfere 
with such a blood clot, in particular, does not break it. 

6 Conclusion 

At the moment, there are many systems analyzing pulse waves (in most cases, math-
ematical statistics methods are used for the analysis). The idea of applying the appa-
ratus of mathematical modeling in this topic seems to us auspicious, but most of 
mathematical models are quite complicated and difficult to apply in practice.
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The method of pulse waves modeling based on soliton solution of Korteweg-de 
Vries equation is considered in this work, test calculations in Maple 8 environment 
are made. The results obtained allow us to speak about the applicability of soliton 
theory for pulse wave modeling. It is planned to analyze the possibility of further 
application of N-soliton solution for medical purposes. 

A significant causal relationship between PE and IPC procedures has not yet been 
established. The incidence of symptomatic PE developing during IPC therapy is 
0.03–0.73% and varies depending on the patient profile. However, caution should 
be when prescribing IPC therapy for ones with suspected venous thrombosis. More 
thorough further research is desirable in soliton wave’s usage in medicine. 
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