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APPLICATION OF SOLITON SOLUTION  

THEORY TO PULSE WAVE MODELING 
 

Introduction 

From the physical point of view, blood flow is a rather complex process; many researchers 

even call it the third mode of flow. Difficulties in modeling this process are due to many factors: 

both purely "physical" (for example, the fact that the blood itself is not Newtonian fluid, blood 

flows through blood vessels and veins) and the fact that you have to take into account various 

regulatory functions. For this reason, most models based on the theory of mathematical 

hemodynamics are quite complex and difficult to apply. 

This part considers the approach of modeling pulse waves using soliton theory. The basic 

idea is that the nature of a real pulse wave is very similar to the properties of solitons. The central 

role is played by the properties of the elastic interaction between solitons and solitons with local 

perturbations. [1-3] 

1. Volobuev's model 

In [1] the process of fluid flow through an elastic thin-walled tube is considered. The 

nonlinear differential equations of these processes are derived; the modeling of a solitary (pulse 

wave) is performed on the basis of the Korteweg - de Vries models and the modified nonlinear 

Schrödinger equation. The main advantage of these models is that in their derivation the process 
of pulse wave propagation is considered quite deeply. It is noted that due to the complexity of the 

blood flow process, these models describe only some of the phenomena observed in the 

cardiovascular system. 

In our work, we consider the pulse wave without taking into account the processes of blood 

flow regulation; we can say that we consider the pulse wave as the propagation of a solitary (pulse) 

wave in an elastic thin-walled tube. Based on this, we chose the Korteweg-de Vries equation as a 

model: 𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0     (1) 

Properties of solitons 

Soliton is a localized stationary or stationary on average perturbation of a homogeneous or 

spatially periodic nonlinear medium [1-3]. Up to the beginning of the 1960s, soliton was called a 

soliton wave – a wave packet of a constant shape, propagating with a steady speed over the surface 

of a heavy liquid of a finite depth and in plasma. Nowadays many different physical objects fall 

underneath the definition of soliton. The first classification of soliton can be made according to 

the number of spatial dimensions, along which the stationary perturbation of a nonlinear medium 
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is localized. The one-dimensional soliton includes classical soliton waves in liquids, domain walls 

in ferro- and antiferromagnetics, 2p-pulses and envelope solitons in nonlinear optics [1-6]. 

In mathematical terms, soliton are localized stationary solutions of nonlinear partial 

differential equations or their generalizations (differential-difference, integro-differential, etc. 

equations). In many cases different physical situations and phenomena are described by the same 

equations, e.g. the Korteweg-de Vries equation, the Sine-Gordon equation, the Schrödinger 
nonlinear equation, the Kadomtsev-Petviashvili equation. [1-5] Linear equations (except the one-

dimensional wave equation) have no localized stationary solutions. S. are essentially non-linear 

objects whose behavior and properties are fundamentally different from the behavior of wave 

packets of small amplitude. The difference is especially strong if the soliton has a topological 

charge, i.e. if the configuration of the wave field in the presence of the soliton is topologically 

different from the configuration of the unperturbed state. So, a number of equations having soliton 

solutions belong to the class of equations where the inverse scattering problem is applicable and 

most of them are integrable Hamiltonian systems [6-9]. 

3. Soliton solution of the Korteweg-de Vries equation 

The Korteweg-de Vries equation is considered: 𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0     (1) 

In [1,2] the method of forming the N-soliton solution of this equation is presented. The 

general solution of the Korteweg-de Vries equation consists of a soliton and a non-soliton part. In 

our case, we consider a solution in which the local perturbations (non-soliton part) are negligibly 

small. That is, we are building a somewhat idealized model that does not take into account small 

local perturbations. Hirota [2] showed that in general the N-soliton solution has the form: 𝑢 = 2 𝑑2𝑑𝑥2 𝑙𝑛𝐹      (2) 

Where F is the determinant of some matrix [2]. 

Substituting (2) into (1), once integrating and assuming the integration constant equal to 

zero, we obtain: 𝐹𝑥𝑡𝐹 − 𝐹𝑥𝐹𝑡 + 𝐹𝑥𝑥𝑥𝑥𝐹 − 4𝐹𝑥𝑥𝑥𝐹𝑥 + 3𝐹𝑥𝑥2 = 0   (3) 

For further analysis it is convenient to enter the operator: 𝐷𝑥𝑚𝐷𝑡𝑛𝑎𝑏 = (𝜕𝑥 − 𝜕𝑥`)𝑚(𝜕𝑥 − 𝜕𝑥`)𝑛𝑎(𝑥, 𝑡)𝑏(𝑥`, 𝑡`)| 𝑥`=𝑥𝑡`=𝑡   (4) 

So, the Equation (3) can be rewritten as: (𝐷𝑥𝐷𝑡 + 𝐷𝑥4)𝐹 ∙ 𝐹 = 0     (5) 

Next, suppose that the function F could be represented as a formal series: 𝐹 = 1 + 𝜀𝑓(1) + 𝜀2𝑓(2)+. ..    (6) 

Where 𝑓(1) = ∑ 𝑒𝜂𝑖𝑁𝑖=1 , 𝜂𝑖 = 𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜂𝑖0   (7) 

where 𝑘𝑖 , 𝜔𝑖 , 𝜂𝑖(0) — are constants. 

In the case of the Korteweg-de Vries equation, this formal series ends. Indeed, substituted 

(6) into (5), we found (𝐷𝑥𝐷𝑡 + 𝐷𝑥4)(1 + 𝜀𝑓(1) + 𝜀2𝑓2 +⋯)(1 + 𝜀𝑓(1) + 𝜀2𝑓2 +⋯) = 0 

And equated to zero, the coefficients for each degree of  𝜀, we obtained 𝑂(1): 0 = 0       (8a) 𝑂(𝜀): 2(𝜕𝑥𝜕𝑡 + 𝜕𝑥4)𝑓(1) = 0    (8b) 𝑂(𝜀2): 2(𝜕𝑥𝜕𝑡 + 𝜕𝑥4)𝑓(2) = −(𝐷𝑥𝐷𝑡 + 𝐷𝑥4)𝑓(1)𝑓(1)   (8c) 𝑂(𝜀3): 2(𝜕𝑥𝜕𝑡 + 𝜕𝑥4)𝑓(3) = −2(𝐷𝑥𝐷𝑡 + 𝐷𝑥4)𝑓(1)𝑓(2)  (8d) 

Equation (8b) is homogeneous equation. As a solution of this equation, we took eq.(7). If 

we try to continue the calculations of the next parts of the series, starting with solution eq.(7) for 

an arbitrary random N, we could encounter the analytical difficulties. More often, we can obtain 

equations solutions for N = 1,2, and then hypothesize the structure of the solution for an arbitrary 
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random N and prove it by induction method. For 𝑁 = 1𝑓(1) = 𝑒𝜂1. Then it follows from eq.(8b) 

that𝜔1 = −𝑘13. We could obtain 𝑓(2) from the relation (8c), which reduces to (𝜕𝑥𝜕𝑡 + 𝜕𝑥4)𝑓(2) = 0. 

So 𝑓2 = 0 and the series sequence breaks off. Therefore, for 𝑁 = 1 we have: 𝐹1 = 1 + 𝑒𝜂1,   𝜔1 = −𝑘13,   𝑢 = 𝑘122 𝑠𝑒𝑐ℎ2 12 (𝑘1𝑥 − 𝑘13𝑡 + 𝜂1(0)) 
For N = 2, we take equation (8b) as a solution 𝑓(1) = 𝑒𝜂1 + 𝑒𝜂2,   𝜂𝑖 = 𝑘𝑖𝑥 − 𝑘𝑖3𝑡 + 𝜂𝑖(0) 
Then (8c) reduces to the equation: 2(𝜕𝑥𝜕𝑡 + 𝜕𝑥4)𝑓(2) = −2((𝑘1 − 𝑘2)(−𝜔1 + 𝜔2) + (𝑘1 − 𝑘2)4)𝑒𝜂1+𝜂2 

That is have a solution [3] 𝑓(2) = 𝑒𝜂1+𝜂2+𝐴12 𝑒𝐴𝑖𝑗 = (𝑘𝑖−𝑘𝑗𝑘𝑖+𝑘𝑗)2     (9) 

(please, note that 𝑘1 ≠ 𝑘2). Substituting 𝑓(1), 𝑓(2) in (8d), we make sure that the right-hand side 

of (8d) is zero, so let's take it 𝑓(3) = 0. Thus, for N = 2 𝐹2 = 1 + 𝑒𝜂1 + 𝑒𝜂2 + 𝑒𝜂1+𝜂2+𝐴12 
The function 𝑢 = 2𝑑2(ln 𝐹2) 𝑑𝑥2⁄  corresponds to the two-soliton solution of the Korteweg-

de Vries equation. Performing similar calculations for N = 3, we obtain: 𝐹3 = 1 + 𝑒𝜂1 + 𝑒𝜂2 + 𝑒𝜂1+𝜂2+𝐴12 + 𝑒𝜂1+𝜂2+𝐴13 ++𝑒𝜂2+𝜂3+𝐴23 + 𝑒𝜂1+𝜂2+𝜂3+𝐴12+𝐴13+𝐴23 
where the coefficients 𝐴𝑖𝑗 are determined by formula (9). 

Based on the above, it is hypothesized that the structure of the general N-soliton solution 

has the form [3]: 𝐹𝑁 = ∑ 𝑒𝑥𝑝(∑𝜇𝑖𝜂𝑖𝑁
𝑖=1 + ∑ 𝜇𝑖𝜇𝑗𝐴𝑖𝑗𝑁

1≤𝑖<𝑗 )𝜇=0,1  

where the sum of 𝜇 runs on all sets 𝜇𝑖 , 𝑖 = 1, . . , 𝑁. Note that 𝜇𝑖 , 𝑖 = 1, . . , 𝑁 — they are associated 

with the phase shift of solitons during scattering. 

4. Application of the theory of solitons to modeling of a pulse wave 

It is assumed that the pulse wave is a set of pulses interacting with each other in time. Since 

a soliton is a solitary wave that elastically interacts with arbitrary local perturbations, it makes 

sense to consider the system of interacting solitons as a model. That is, we put the correspondence 

between: 1 pulse – for soliton. So, the N-soliton solutions of the Korteweg-de Vries equation are 

used as the analytical form of soliton waves [1-3]. 𝑢 = 2 𝑑2𝑑𝑥2 ln 𝐹𝑁 

The potential u is a complex function represented as a combination of exponential functions 

with base e. The obtained solution u includes 3N parameters, through which variables 𝜂𝑖 = 𝑘𝑖𝑥 +𝜔𝑖𝑡 − ℎ𝑖(0) are determined, where 𝑘𝑖 , 𝜔𝑖 , 𝜂𝑖(0) are the parameters of this system. 

The following properties of solitons were used: 

1) The amplitude of the i-th soliton, which does not closely interact with other solitons, is 

directly proportional to the corresponding parameter 𝑘𝑖, namely 𝑢𝑚𝑎𝑥𝑖 = 12𝑘𝑖2 

2) The argument of the point of maximum of the i-th soliton is determined by the following 

expression: 𝑥𝑚𝑎𝑥𝑖 = −−𝜔𝑖𝑡 + ℎ𝑖(0)𝑘𝑖  
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3) The velocity in phase c is defined as the ratio of the coefficients at x and t. For the i-th 

soliton it is equal. 𝑐𝑖 = 𝜔𝑖 𝑘𝑖⁄  

For this system, all phase velocities are considered to be the same, since we assume that the 

real pulse wave does not change in time or, at least, for some period of time. That is 𝑐1 = 𝑐2 =. . . = 𝑐𝑁 

Using these properties, we obtain a system of equations as in [3]: 
 

{   
   12𝑘𝑖2 = 𝑢𝑖 , 𝑖 = 1, 𝑁;−−𝜔𝑖𝑡 + ℎ𝑖(0)𝑘𝑖 = 𝑥𝑖 ,   𝑖 = 1, 𝑁𝜔𝑖𝑘𝑖 = 𝜔𝑖+1𝑘𝑖+1 ;  𝑖 = 1,𝑁 − 1

 

 

As the values of the local maxima, we take the values of the coordinates of the vertices of 

each "hump" of the real pulse wave obtained experimentally. 

5. The soliton theory application to intermittent pneumatic compression; influence on 

thrombus release. 

The resulting system consists of 3N-1 equations, and we have 3N unknowns, therefore, one 

of the parameters we choose arbitrarily. Take 𝜔1 = 1, then this system is solved definitely. 

Solving this system, we could obtain the solution of equation (1) that is agreed with the theory in 

[1-3] ideas of applying the apparatus of mathematical modeling in medicine of pulse waves and 

in pneumatic device. 

A recent survey of healthcare practitioners in North China revealed that the main concern 

with intermittent pneumatic compression (IPC) - supply is the fear of a thrombus release due 

to the soliton waves appearing in veins. This was expected by 35% of respondents [9]. And 

this is actually one of the first objections to discuss when getting acquainted with IPC in 

Ukraine. To assess the incidence of symptomatic pulmonary embolism (PE) in patients 

undergoing IPC therapy we performed a literature review searching the MEDLINE database 

with no language restrictions from January 1, 2017 until December 31, 2020. We consider two 

scenarios: when IPC starts after the onset of thrombosis, and when thrombosis occurs after 

IPC starts. 

The first option is more often in unfavorable conditions, when an adequate diagnosis of 

thrombosis meets difficulties. These can be cases with mute blood clots, with low scores on the 

thrombotic risk scale, when it is not possible to perform routine ultrasound diagnostics, or when 

some vessels are less visible on the sensor. 

In 2015, the CLOTS-3 study report appeared. In stroke, thromboprophylaxis by IPC begins 

post factum, when the thrombotic risk is already increasing. Although the authors excluded 

patients with symptoms of pre-existing thrombosis, the risk of having a thrombus was not entirely 

low. Initial ultrasound was not performed, and the control one was unable to fully visualize the 

veins in almost half of the patients. Commenting on this, the authors noted: “There was a concern 
that the application of IPC to patients who may already have a deep vein thrombosis might displace 

the thrombus and increase the risk of PE. However, this potential risk has not been documented 

in the randomized controlled trials so far. We have not identified any case reports that provide 

convincing evidence that this has occurred" [10]. 

The second scenario is a more typical when the IPC is used for thromboprophylaxis. We 

identified 9 trials with 40667 participants, and the main results are presented in the Table 1. 
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Table 1 

The incidence of symptomatic PE in patients undergoing IPC therapy. 
 Patients with IPC Patients without IPC 

Total 
Symptomatic PE 

cases 
Total 

Symptomatic PE 

cases 

Neurosurgery, neurology [11, 

12] 
3870 

10 (0.26%) 
3218 

37 (1.15%) 

Orthopedic, traumatology [13, 

14, 15] 
607 

2 (0.33%) 
1238 

15 (1.21%) 

Oncology [16, 17, 18] 688 5 (0.73%) 370 7 (1.9%) 

Other [19, 20] 20324 6 (0.03%) 10819 6 (0.06%) 

Total 25489 23 (0.09%) 15645 65 (0.42%) 

 

Although thrombosis is more common with IPC than with heparin, dangerous complications 

such as clinical or fatal PE occur in less than 1% of cases. Moreover, some sources [11, 12, 15, 

19] show that the risk of PE with heparin may be higher than with IPC. This is probably because 

the IPC mimics physical activity. A thrombus that grows during IPC therapy is adapted to motor 

load, while the anatomical structure of a "heparin" thrombus may not be strong enough for soliton 

fluctuations. Another reason may be that during IPC, the thrombus progresses mainly in those 

veins unreachable to the external mechanical pressure. Therefore, IPC therapy just does not 

interfere with such a blood clot, in particular, does not break it. 

Conclusion 

At the moment, there are many systems analyzing pulse waves (in most cases, mathematical 

statistics methods are used for the analysis). The idea of applying the apparatus of mathematical 

modeling in this topic seems to us auspicious, but most of mathematical models are quite 

complicated and difficult to apply in practice. 

The method of pulse waves modeling based on soliton solution of Korteweg- de Fries 

equation is considered in this work, test calculations in Maple 8 environment are made. The results 

obtained allow us to speak about the applicability of soliton theory for pulse wave modeling. It is 

planned to analyze the possibility of further application of N-soliton solution for medical purposes.  

A significant causal relationship between PE and IPC procedures has not yet been 

established. The incidence of symptomatic PE developing during IPC therapy is 0.03-0.73% and 

varies depending on the patient profile. However, caution should be when prescribing IPC therapy 

for ones with suspected venous thrombosis. More thorough further research is desirable in soliton 

wave’s usage in medicine. 
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