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INTRODUCTION: Interindividual clinical vari-
ability is vast in humans infected with
severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), ranging from silent in-
fection to rapid death. Three risk factors for
life-threatening coronavirus disease 2019
(COVID-19) pneumonia have been identified—
being male, being elderly, or having other
medical conditions—but these risk factors
cannot explain why critical disease remains
relatively rare in any given epidemiological
group. Given the rising toll of the COVID-19
pandemic in terms ofmorbidity andmortality,
understanding the causes and mechanisms of
life-threatening COVID-19 is crucial.

RATIONALE: B cell autoimmune infectious
phenocopies of three inborn errors of cyto-

kine immunity exist, in which neutralizing
autoantibodies (auto-Abs) against interferon-g
(IFN-g) (mycobacterial disease), interleukin-6
(IL-6) (staphylococcal disease), and IL-17A and
IL-17F (mucocutaneous candidiasis) mimic the
clinical phenotypes of germline mutations of
the genes that encode the corresponding cyto-
kines or receptors. Human inborn errors of
type I IFNs underlie severe viral respiratory
diseases. Neutralizing auto-Abs against type I
IFNs, which have been found in patients with
a few underlying noninfectious conditions,
have not been unequivocally shown to un-
derlie severe viral infections. While search-
ing for inborn errors of type I IFN immunity
in patients with life-threatening COVID-19
pneumonia, we also tested the hypothesis
that neutralizing auto-Abs against type I IFNs

may underlie critical COVID-19. We searched
for auto-Abs against type I IFNs in 987 pa-
tients hospitalized for life-threatening COVID-
19 pneumonia, 663 asymptomatic or mildly
affected individuals infected with SARS-
CoV-2, and 1227 healthy controls from whom
samples were collected before the COVID-
19 pandemic.

RESULTS: At least 101 of 987 patients (10.2%)
with life-threatening COVID-19 pneumonia
had neutralizing immunoglobulin G (IgG)
auto-Abs against IFN-w (13 patients), against
the 13 types of IFN-a (36), or against both (52)
at the onset of critical disease; a few also had
auto-Abs against the other three individual
type I IFNs. These auto-Abs neutralize high
concentrations of the corresponding type I
IFNs, including their ability to block SARS-
CoV-2 infection in vitro. Moreover, all of the
patients tested had low or undetectable serum
IFN-a levels during acute disease. These auto-
Abs were present before infection in the
patients tested and were absent from 663
individuals with asymptomatic ormild SARS-
CoV-2 infection (P < 10−16). Theywere present
in only 4 of 1227 (0.33%) healthy individuals
(P < 10−16) before the pandemic. The patients
with auto-Abs were 25 to 87 years old (half
were over 65) and of various ancestries. No-
tably, 95 of the 101 patients with auto-Abs
were men (94%).

CONCLUSION:AB cell autoimmune phenocopy
of inborn errors of type I IFN immunity ac-
counts for life-threatening COVID-19 pneumo-
nia in at least 2.6% of women and 12.5% ofmen.
In these patients, adaptive autoimmunity im-
pairs innate and intrinsic antiviral immunity.
These findings provide a first explanation for
the excess of men among patients with life-
threatening COVID-19 and the increase in
risk with age. They also provide a means of
identifying individuals at risk of developing
life-threatening COVID-19 and ensuring their
enrolment in vaccine trials. Finally, they pave
the way for prevention and treatment, includ-
ing plasmapheresis, plasmablast depletion,
and recombinant type I IFNs not targeted by
the auto-Abs (e.g., IFN-b).▪
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Neutralizing auto-Abs to type I IFNs underlie life-threatening COVID-19 pneumonia. We tested the hypothesis
that neutralizing auto-Abs against type I IFNs may underlie critical COVID-19 by impairing the binding of type I
IFNs to their receptor and the activation of the downstream responsive pathway. Neutralizing auto-Abs are
represented in red, and type I IFNs are represented in blue. In these patients, adaptive autoimmunity impairs innate
and intrinsic antiviral immunity. ISGs, IFN-stimulated genes; TLR, Toll-like receptor; IFNAR, IFN-a/b receptor;
pSTAT, phosphorylated signal transducers and activators of transcription; IRF, interferon regulatory factor.
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Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening
coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies
(auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both
(52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The
auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These
auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were
present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of
the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-
threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.

M
ycobacteriosis, staphylococcosis, and
candidiasis can be driven by mono-
genic inborn errors of interferon-g
(IFN-g), interleukin-6 (IL-6), and IL-
17A and IL-17F, respectively, or they

can be driven by their genetically driven auto-
immune phenocopies, with the production of
neutralizing autoantibodies (auto-Abs) against
these cytokines (1–8). Type I IFNs, first de-
scribed in 1957, are ubiquitously expressed
cytokines that contribute to both innate im-
munity (through their secretion by plasma-
cytoid dendritic cells and other leukocytes)
and cell-intrinsic immunity (in most if not all
cell types) against viral infections (9–13). Their
receptors are ubiquitously expressed and trig-
ger the induction of IFN-stimulated genes
(ISGs) via phosphorylated STAT1-STAT2-IRF9

trimers (STAT, signal transducers and activa-
tors of transcription; IRF, interferon regula-
tory factor) (14). Neutralizing immunoglobulin
G (IgG) auto-Abs against type I IFNs can occur
in patients treated with IFN-a2 or IFN-b (15)
and exist in almost all patients with auto-
immune polyendocrinopathy syndrome type I
(APS-1) (16). They are also seen in womenwith
systemic lupus erythematosus (17).
These patients do not seem to suffer from

unusually severe viral infections, although hu-
man inborn errors of type I IFNs can underlie
severe viral diseases, both respiratory and
otherwise (18). In 1984, Ion Gresser described
a patient with unexplained auto-Abs against
type I IFNs suffering from severe chickenpox
and shingles (19, 20). More recently, auto-Abs
against type I IFNs have been found in a few

patients with biallelic, hypomorphic RAG1 or
RAG2 mutations and viral diseases including
severe chickenpox and viral pneumonias (21).
Our attentionwas drawn to three patients with
APS-1, with known preexisting anti–type I IFN
auto-Abs, who had life-threatening coronavirus
disease 2019 (COVID-19) pneumonia (22) (see
detailed case reports inMethods).While search-
ing for inborn errors of type I IFNs (18, 23), we
hypothesized that neutralizing auto-Abs against
type I IFNs might also underlie life-threatening
COVID-19 pneumonia.

Auto-Abs against IFN-a2 and/or IFN-w in
patients with critical COVID-19

We searched for auto-Abs against type I IFNs in
987 patients hospitalized for life-threatening
COVID-19 pneumonia. We also examined 663
individuals infected with severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2)
presenting asymptomatic infection or mild
disease and 1227 healthy controls whose
samples were collected before the COVID-19
pandemic. Plasma or serum samples were
collected from patients with critical COVID-
19 during the acute phase of disease. Multiplex
particle-based flow cytometry revealed a high
fluorescence intensity (FI) (>1500) for IgG
auto-Abs against IFN-a2 and/or IFN-w in 135
patients (13.7%)with life-threatening COVID-19
(Fig. 1A). We found that 49 of these 135 pa-
tients were positive for auto-Abs against both
IFN-a2 and IFN-w, whereas 45 were positive
only for auto-Abs against IFN-a2, and 41 were
positive only for auto-Abs against IFN-w.
We also performed enzyme-linked immuno-

sorbent assay (ELISA), and the results ob-
tained were consistent with those obtained
with Luminex technology (fig. S1A). We found
that 11 and 14 of 23 patients tested had low
levels of IgM and IgA auto-Abs against IFN-w
and IFN-a2, respectively (Fig. 1B and fig. S1B).
Auto-Abs against type I IFNs were detected in
two unrelated patients for whomwe had plas-
ma samples obtained before SARS-CoV-2 in-
fection, which indicates that these antibodies
were present before SARS-CoV-2 infection and
were not triggered by the infection. As a con-
trol, we confirmed that all 25 APS-1 patients
tested had high levels of auto-Abs against IFN-
a2 and IFN-w (fig. S1C). Overall, we found that
135 of 987 patients (13.7%) with life-threatening
COVID-19 pneumonia had IgG auto-Abs against
at least one type I IFN.

The auto-Abs neutralize IFN-a2 and IFN-w in vitro

We then tested whether auto-Abs against IFN-
a2 and IFN-w were neutralizing in vitro. We
incubated peripheral blood mononuclear cells
(PBMCs) from healthy controls with 10 ng/mL
IFN-a2 or IFN-w in the presence of plasma
from healthy individuals or from patients
with auto-Abs. A complete abolition of STAT1
phosphorylation was observed in 101 patients
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with auto-Abs against IFN-a2 and/or IFN-w
(table S1). The antibodies detected were neu-
tralizing against both IFN-a2 and IFN-w in 52
of these 101 patients (51%), against only IFN-
a2 in 36 patients (36%), and against only IFN-
w in 13 patients (13%) at the IFN-a2 and IFN-w
concentrations tested (Fig. 1, C and D). IgG
depletion from patients with auto-Abs restored
normal pSTAT1 induction after IFN-a2 and
IFN-w stimulation, whereas the purified IgG
fully neutralized this induction (Fig. 1C and
fig. S1D). Furthermore, these auto-Abs neutral-
ized high amounts of IFN-a2 (fig. S1E) and
were neutralizing at high dilutions (Fig. 1E
and fig. S1F). Notably, 15 patients with life-
threatening COVID-19 and auto-Abs against
IFN-a2 and/or IFN-w also had auto-Abs against
other cytokines [IFN-g, granulocyte-macrophage
colony-stimulating factor (GM-CSF), IL-6, IL-10,
IL-12p70, IL-22, IL-17A, IL-17F, and/or tumor
necrosis factor–b (TNFb)], only three of which
(IL-12p70, IL-22, and IL-6) were neutralizing
(in four patients) (fig. S2, A to C). Similar
proportions were observed in the other co-
horts (fig. S2, D to L).
We also analyzed ISG induction after 2 hours

of stimulation with IFN-a2, IFN-b, or IFN-g in

the presence of plasma from healthy individ-
uals or from patients with auto-Abs. With plas-
ma from eight patients with auto-Abs against
IFN-a2, the induction of ISG CXCL10was abo-
lished after IFN-a2 stimulation butmaintained
after stimulation with IFN-g (Fig. 1F). We then
found that plasma from the five patients with
neutralizing auto-Abs neutralized the protec-
tive activity of IFN-a2 in Madin–Darby bovine
kidney (MDBK) cells infected with vesicular
stomatitis virus (VSV) (table S2). Overall, we
found that 101 of 987 patients (10.2%)—including
95 men (94%)—with life-threatening COVID-19
pneumonia had neutralizing IgG auto-Abs
against at least one type I IFN. By contrast,
auto-Abswere detected in only 4 of 1227 healthy
controls (0.33%) (Fisher exact test, P < 10−16)
and in none of the 663 patients with asymp-
tomatic or mild SARS-CoV-2 infection tested
(Fisher exact test, P < 10−16).

Auto-Abs against all 13 IFN-a subtypes in
patients with auto-Abs to IFN-a2

We investigated whether patients with neu-
tralizing auto-Abs against IFN-a2 only or those
with neutralizing auto-Abs against IFN-a2 and
IFN-w also had auto-Abs against the other 15

type I IFNs. ELISA showed that all patients
tested (N = 22) with auto-Abs against IFN-a2
also had auto-Abs against all 13 IFN-a sub-
types (IFN-a1, -a2, -a4, -a5, -a6, -a7, -a8, -a10,
-a13, -a14, -a16, -a17, and -a21), whereas only 2
of the 22 patients tested had auto-Abs against
IFN-b, 1 had auto-Abs against IFN-k, and 2
had auto-Abs against IFN-e (Fig. 2A). The
auto-Abs against IFN-b had neutralizing activ-
ity against IFN-b (Fig. 1D). We confirmed that
all of the patients had auto-Abs against all 13
subtypes of IFN-a by testing the same samples
using luciferase-based immunoprecipitation as-
say (LIPS) (Fig. 2B). For IFN-b, we also screened
the whole cohort in a multiplex assay. We
found that 19 of 987 (1.9%) patients had auto-
Abs against IFN-b and that all of themwere in
our cohort of severe COVID-19 individuals
with neutralizing auto-Abs against IFN-a and/
or IFN-w. Of these patients with auto-Abs
against IFN-b, only two were neutralizing
against IFN-b (Fig. 1, D and F).
Ten of the 17 genes encoding type I IFNs

(IFN-a2, -a5, -a6, a8, -a13, -a14, -a21, -b, -w, and
-k), have undergone strong negative selection,
which suggests that they play an essential role
in the general population. By contrast, the
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Fig. 1. Neutralizing auto-Abs against IFN-a2 and/or IFN-w in patients with
life-threatening COVID-19. (A) Multiplex particle-based assay for auto-Abs
against IFN-a2 and IFN-w in patients with life-threatening COVID-19 (N = 782), in
patients with asymptomatic or mild SARS-CoV-2 infection (N = 443), and in
healthy controls not infected with SARS-CoV-2 (N = 1160). (B) Anti–IFN-w Ig
isotypes in 23 patients with life-threatening COVID-19 and auto-Abs to type I
IFNs. (C) Representative fluorescence-activated cell sorting (FACS) plots
depicting IFN-a2– or IFN-w–induced pSTAT1 in healthy control cells (gated on
CD14+ monocytes) in the presence of 10% healthy control or anti–IFN-a2 or
anti–IFN-w auto-Abs–containing patient plasma (top panel) or an IgG-depleted
plasma fraction (bottom panel). Max, maximum; neg, negative; pos, positive;
NS, not stimulated. (D) Plot of anti–IFN-a2 auto-Ab levels against their

neutralization capacity. The stimulation index (stimulated over unstimulated
condition) for the plasma from each patient was normalized against that of healthy
control plasma from the same experiment. Spearman’s rank correlation coefficient =
−0.6805; P < 0.0001. (E) Median inhibitory concentration (IC50) curves
representing IFN-a2– and IFN-w–induced pSTAT1 levels in healthy donor cells
in the presence of serial dilutions of patient plasma. The stimulation index
(stimulated over unstimulated condition) for patient plasma was normalized
against that of 10% healthy control plasma. IFN-a2: IC50 = 0.016%, R2 = 0.985;
IFN-w: IC50 = 0.0353%, R2 = 0.926. R2, coefficient of determination. (F) Neutralizing
effect on CXLC10 induction, after stimulation with IFN-a2, IFN-b, or IFN-g, in the
presence of plasma from healthy controls (N = 4), patients with life-threatening
COVID-19 and auto-Abs against IFN-a2 (N = 8), and APS-1 patients (N = 2).
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other seven IFN loci in the human genome
often carry loss-of-function alleles (24). More-
over, the 13 IFN-a subtypes and IFN-w are
more-closely related to each other than they
are to the other three IFNs (IFN-b, IFN-e, and
IFN-k), which are structurally and phyloge-
netically more distant (Fig. 2C). Thus, all
patients with neutralizing auto-Abs against
IFN-a2 that we tested (N = 22) had auto-Abs
against all 13 IFN-a subtypes, and 3 of the 22
patients tested (14%) had auto-Abs against
14 or more type I IFNs.

The auto-Abs neutralize IFN-a2 against
SARS-CoV-2 in vitro and IFN-a in vivo

Plasma from eight patients with neutralizing
auto-Abs against type I IFN also neutralized
the ability of IFN-a2 to block the infection of

Huh7.5 cells with SARS-CoV-2 (Fig. 3A). Plas-
ma from two healthy controls or from seven
SARS-CoV-2–infected patients without auto-
Abs did not block the protective action of IFN-
a2 (Fig. 3A and fig. S3A). These data provide
compelling evidence that the patients’ blood
carried sufficiently large amounts of auto-Abs
to neutralize the corresponding type I IFNs and
block their antiviral activity in vitro, including
that against SARS-CoV-2.
We also found that all 41 patients with neu-

tralizing auto-Abs against the 13 types of IFN-a
tested had low (one patient) or undetectable
(40 patients) levels of the 13 types of IFN-a in
their plasma during the course of the disease
(Fig. 3B) (25, 26). Type I IFNsmay be degraded
and/or bound to the corresponding circulating
auto-Abs. The presence of circulating neutral-

izing auto-Abs against IFN-a is, therefore,
strongly associatedwith low serum IFN-a levels
(Fisher exact test, P < 10−6). Consistently in
patients with neutralizing auto-Abs against
IFN-a2, the baseline levels of type I IFN–
dependent transcripts were low, whereas they
were normal for nuclear factor kB (NF-kB)–
dependent transcripts (Fig. 3C and fig. S3B).
Overall, our findings indicate that the auto-
Abs against type I IFNs present in patients
with life-threatening COVID-19 were neu-
tralizing in vitro and in vivo.

Pronounced excess of men in patients with
auto-Abs against type I IFNs

There was a pronounced excess ofmale patients
(95 of 101; 94%) with critical COVID-19 pneu-
monia and neutralizing auto-Abs against type I
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Fig. 2. Auto-Abs against the different type I IFN subtypes. (A) ELISA for
auto-Abs against the 13 different IFN-a subtypes, IFN-w, IFN-b, IFN-k, and IFN-e
in patients with life-threatening COVID-19 and auto-Abs against IFN-a2 (N = 22),
APS-1 patients (N = 2), and healthy controls (N = 2). (B) LIPS for the 12 different
IFN-a subtypes tested in patients with auto-Abs against IFN-a2 (N = 22) and

healthy controls (N = 2). (C) Neighbor-joining phylogenetic tree of the 17 human
type I IFN proteins. Horizontal branches are drawn to scale (bottom left, number
of substitutions per site). Thinner, intermediate, and thicker internal branches
have bootstrap support of <50, ≥50, and >80%, respectively. The bootstrap
value for the branch separating IFN-w from all IFN-a subtypes is 100%.
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IFNs. This proportion of males was higher than
that observed in patients with critical COVID-19
without auto-Abs (75%; Fisher exact test, P =
2.5 × 10−6), and the proportionwasmuch higher
than that in male patients in the asymptomatic

or pauci-symptomatic cohort (28%; Fisher exact
test, P < 10−6) (Table 1, Fig. 4A, and fig. S4A).
Further evidence for X-chromosome linkage
was provided by the observation that one
of the seven women with auto-Abs and life-

threatening COVID-19 had X chromosome–
linked incontinentia pigmenti (IP), in which
cells activate only a single X chromosome (cells
having activated the X chromosome bearing
the null mutation inNEMO dying in the course
of development) (27). The prevalence of auto-
Abs against type I IFNs in the general pop-
ulationwas estimated at 0.33% (0.015 to 0.67%)
in a sample of 1227 healthy individuals—a value
much lower than that in patients with life-
threatening COVID-19 pneumonia, by a factor
of at least 15.
The patients with auto-Abs were also slightly

older than the rest of our cohort (49.5% of
patients positive for auto-Abswere over 65 years
of age versus 38% for the rest of the cohort;
P = 0.024), which suggests that the frequency
of circulating anti–type I IFNs auto-Abs in-
creaseswith age (Table 1 andFig. 4B).However,
auto-Abs were found in patients aged from
25 to 87 years (fig. S4B). Principal components
analysis (PCA) was performed on data from
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Fig. 3. Enhanced SARS-CoV-2 replication, despite the presence of IFN-a2,
in the presence of plasma from patients with auto-Abs against IFN-a2 and
low in vivo levels of IFN-a. (A) SARS-CoV-2 replication—measured 24 hours
(left) and 48 hours (right) after infection—in Huh7.5 cells treated with IFN-a2 in the
presence of plasma from patients with life-threatening COVID-19 and neutralizing auto-
Abs against IFN-a2 (N = 8); a commercial anti–IFN-a2 antibody; or control plasma
(N = 2). (B) IFN-a levels in the plasma or serum of patients with neutralizing auto-Abs

(N = 41), healthy controls (N = 5), COVID-19 patients without auto-Abs (N = 21), and
patients with life-threatening COVID-19 and loss-of-function (LOF) variants (N = 10),
as assessed by Simoa ELISA. (C) z-scores for type I IFN gene responses in whole
blood of COVID-19 patients with (N = 8) or without (N = 51) neutralizing auto-Abs, or
healthy uninfected controls (N = 22). The median ± interquartile range is shown.
z-scores were significantly lower for patients with neutralizing auto-Abs compared with
patients without auto-Abs (Mann-Whitney test, P = 0.01).

Table 1. Sex and age distribution of patients with critical COVID-19 with and without auto-Abs. Ages
and sexes of the patients and controls and information about auto-Abs against IFN-a2 and IFN-w, presented by
age and sex. Dashes in rightmost column indicate data not available. OR, odds ratio; CI, confidence interval.

Life-threatening
COVID-19

N total
N auto-Abs positive

(percentage)
OR [95% CI] P value*

Sex
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Female 226 6 (2.6%) 1 –
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Male 761 95 (12.5%) 5.22 [2.27 – 14.80] 2.5 × 10−6
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Age
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

<65 years 602 51 (8.5%) 1 –
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

≥65 years 385 50 (13.0%) 1.61 [1.04 – 2.49] 0.024
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

*P values were derived from Fisher’s exact test, as implemented in R (https://cran.r-project.org/).
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49 patients: 34 Europeans, 5 North Africans,
4 sub-Saharan Africans, 2 patients from the
Middle East, 2 South Asians, 1 East Asian,
and 1 South American (Fig. 4C). Large-scale
studies will be required to determine the fre-
quency of such auto-Abs in humans of differ-
ent sexes, ages, and ancestries. Finally, the
presence of auto-Abs was associated with a
poor outcome, with death occurring in 37 of
the 101 patients (36.6%) (table S1).

Neutralizing auto-Abs to type I IFNs are
causative of critical COVID-19

There are multiple lines of evidence to suggest
that the neutralizing auto-Abs against type I
IFNs observed in these 101 patients preceded
infection with SARS-CoV-2 and accounted for
the severity of disease. First, the two patients
for whom testingwas performed before COVID-
19 were found to have auto-Abs before infec-
tion. Second, three patients with APS-1 known
to have neutralizing auto-Abs against type I
IFN immunity before infection also had life-
threatening COVID-19 (22) (supplementary
methods). Third, we screened a series of 32
women with IP and found that a quarter of
them had auto-Abs against type I IFNs, in-
cluding one who developed critical COVID-19
(fig. S1C). Fourth, there is a marked bias in
favor of men, which suggests that the produc-
tion of auto-Abs against type I IFNs—whether

driven by germ line or somatic genome—may
be X chromosome–linked and therefore pre-
existing to infection.
Moreover, IFN-a subtypes were undetect-

able during acute disease in the blood of
patients with auto-Abs against IFN-a, which
suggests a preexisting or concomitant biolog-
ical impact in vivo. It is also unlikely that
patients could break self-tolerance and mount
high titers of neutralizing IgG auto-Abs against
type I IFN within only 1 or even 2 weeks of
infection. Finally, inborn errors of type I IFNs
underlying life-threatening COVID-19 in other
previously healthy adults—including autosomal
recessive IFN-a/b receptor subunit 1 (IFNAR1)
deficiency—have also been reported in an ac-
companying paper (18). Collectively, these find-
ings suggest that auto-Abs against type I IFNs
are a cause and not a consequence of severe
SARS-Cov-2 infection, although their titers and
affinity may be enhanced by the SARS-CoV-2–
driven induction of type I IFNs. They also pro-
vide an explanation for the major sex bias seen
in patients with life-threatening COVID-19 and
perhaps also for the increase in risk with age.

Conclusion

We report here that at least 10% of patients
with life-threatening COVID-19 pneumonia
have neutralizing auto-Abs against type I IFNs.
With our accompanying description of patients

with inborn errors of type I IFNs and life-
threatening COVID-19 (18), this study high-
lights the crucial role of type I IFNs in protective
immunity against SARS-CoV-2. These auto-Abs
against type I IFNs were clinically silent until
the patients were infected with SARS-CoV-2—
a poor inducer of type I IFNs (28)—which sug-
gests that the small amounts of IFNs induced
by the virus are important for protection against
severe disease. The neutralizing auto-Abs
against type I IFNs, like inborn errors of type I
IFN production, tip the balance in favor of the
virus, which results in devastating disease with
insufficient, and even perhaps deleterious, in-
nate and adaptive immune responses.
Our findings have direct clinical implica-

tions. First, SARS-CoV-2–infected patients can
be screened to identify individuals with auto-
Abs at risk of developing life-threatening
pneumonia. Such patients recovering from
life-threatening COVID-19 should also be ex-
cluded from donating convalescent plasma for
ongoing clinical trials, or at least they should
be tested before their plasma donations are
accepted (29). Second, this finding paves the
way for preventive or therapeutic intervention,
including plasmapheresis, monoclonal Abs de-
pleting plasmablasts, and the specific inhibi-
tion of type I IFN–reactive B cells (30). Finally, in
this patient group, early treatment with IFN-a
is unlikely to be beneficial; however, treatment
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Fig. 4. Demographic and ethnic information about the patients and
controls. (A) Gender distribution in patients with life-threatening COVID-19
and auto-Abs to type I IFNs, patients with life-threatening COVID-19 and
without auto-Abs to type I IFNs, and individuals with asymptomatic or mild
SARS-CoV-2. (B) Age distribution in patients with life-threatening COVID-19

and auto-Abs to type I IFNs, patients with life-threatening COVID-19 and
without auto-Abs to type I IFNs, and individuals with asymptomatic or mild
SARS-CoV-2. yo, years old. (C) PCA on 49 patients with life-threatening
COVID-19 and auto-Abs against type I IFNs. EUR, Europeans; AFR, Africans;
EAS, East-Asians.
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with injected or nebulized IFN-b may have
beneficial effects, as auto-Abs against IFN-b
appear to be rare in patients with auto-Abs
against type I IFNs.

Materials and methods
Subjects and samples

We enrolled 987 patients with proven life-
threatening (critical) COVID-19, 663 asympto-
matic or pauci-symptomatic individuals with
proven COVID-19, and 1227 healthy controls
in this study. All subjects were recruited fol-
lowing protocols approved by local Institutional
Review Boards (IRBs). All protocols followed
local ethics recommendations and informed
consent was obtained when required.
COVID-19 disease severity was assessed in

accordance with the Diagnosis and Treatment
Protocol for Novel Coronavirus Pneumonia.
The term life-threatening COVID-19 pneu-
monia describes pneumonia in patients with
critical disease, whether pulmonary, with
mechanical ventilation [continuous positive
airway pressure (CPAP), bilevel positive air-
way pressure (BIPAP), intubation, or high-flow
oxygen], septic shock, or damage to any other
organ requiring admission in the intensive care
unit (ICU). The individuals with asymptomatic
or mild SARS-CoV-2 infection were individuals
infected with SARS-CoV-2 who remained asy-
mptomatic or developedmild, self-healing, am-
bulatory diseasewith no evidence of pneumonia.
The healthy controls were individuals who
had not been exposed to SARS-CoV-2.
Plasma and serum samples from the patients

and controls were frozen at −20°C immediately
after collection. The fluid-phase LIPS assay was
used todetermine the levels of antibodies against
the SARS-CoV-2 nucleoprotein and spike pro-
tein, as has been previously described (31).

Detection of anti-cytokine auto-Abs
Multiplex particle-based assay

Serum and plasma samples were screened
for auto-Abs against 18 targets in a multiplex
particle-based assay, in which magnetic beads
with differential fluorescence were covalently
coupled to recombinant humanproteins. Patients
with an FI of >1500 for IFN-a2 or IFN-b or
>1000 for IFN-w were tested for blocking activ-
ity, aswere patients positive for another cytokine.

ELISA

ELISA was performed as previously described
(5). In brief, ELISA plates were coated with
recombinant human interferon-a (rhIFN-a)
or rhIFN-w and incubated with 1:50 dilu-
tions of plasma samples from the patients or
controls. A similar protocol was used when
testing for 12 subtypes of IFN-a.

LIPS

Levels of auto-Abs against IFN-a subtypes were
measured with LIPS, as previously described

(32). IFN-a1, IFN-a2, IFN-a4, IFN-a5, IFN-a6,
IFN-a7, IFN-a8, IFN-a10, IFN-a14, IFN-a16,
IFN-a17, and IFN-a21 sequences were trans-
fected inHEK293 cells, and the IFN-a-luciferase
fusion proteins were collected in the tissue
culture supernatant. For autoantibody screen-
ing, serum samples were incubated with
protein G agarose beads, and we then added
2 × 106 luminescence units (LU) of antigen
and incubated. Luminescence intensity was
measured. The results are expressed in arbi-
trary units (AU), as a fold-difference relative to
the mean of the negative control samples.

Functional evaluation of anti-cytokine auto-Abs

The blocking activity of anti–IFN-a and anti–
IFN-w auto-Abs was determined by assessing
STAT1 phosphorylation in healthy control cells
after stimulation with the appropriate cyto-
kines in the presence of 10% healthy control or
patient serum or plasma.
We demonstrated that the IFN-a and IFN-w

blocking activity observedwas due to auto-Abs
and not another plasma factor, by depleting
IgG from the plasmawith a protein G column
Without eluting the IgG, the flow-through
fraction (IgG-depleted) was then collected and
compared with total plasma in the phospho-
STAT1 assay.
The blocking activity of anti–IFN-g, –GM-

CSF, –IFN-l1, –IFN-l2, –IFN-l3, –IL-6, –IL-10,
–IL-12p70, –IL-22, –IL-17A, –IL-17F, -TNFa, and
-TNFb antibodies was assessed with the
assays outlined in table S3, as previously
reported (21).
For the neutralization of ISG induction,

PBMCs were left unstimulated or were stimu-
lated for 2 hourswith 10 ng/mL IFN-a or 10 ng/
mL IFN-g in a final volume of 100 mL. Real-
time quantitative polymerase chain reaction
(RT-qPCR) analysis was performed with Ap-
plied Biosystems Taqman assays for CXCL10,
and the b-glucuronidase (GUS) housekeeping
gene for normalization. Results are expressed
according to the DDCtmethod, as described by
the manufacturer’s kit.

Phylogenetic reconstruction

Protein sequences were aligned with the online
version of MAFFT v7.471 software (33), using
the L-INS-i strategy (34) and the BLOSUM62
scoring matrix for amino acid substitutions.
Phylogenetic tree reconstructionwasperformed
by the neighbor-joining method (35) with the
substitutionmodel (36). Low-confidencebranches
(<50%) are likely to be due to gene conversion
events between IFNA genes, as previously re-
ported (24, 37). The tree was then visualized
(38). Very similar results were obtained with
the corresponding DNA sequences (37, 39).

Statistical analysis

Comparison of proportions were performed
using a Fisher exact test, as implemented in R

(https://cran.r-project.org/). PCA was performed
with Plink v1.9 software on whole-exome and
whole-genome sequencing data with the 1000
Genomes (1kG) Project phase 3 public data-
base as a reference.

Simoa

Serum IFN-a concentrations were determined
with Simoa technology, as previously described
(40, 41), with reagents and procedures ob-
tained from the Quanterix Corporation.

VSV assay

The seroneutralization assay was performed
as previously described (42). In brief, the incu-
bation of IFN-a2withMDBK cells protects the
cultured cells against the cytopathic effect of
VSV. The titer of anti–IFN-a antibodies was
defined as the last dilution causing 50% cell
death.

SARS-CoV-2 experiment

SARS-CoV-2 strainUSA-WA1/2020wasobtained
from BEI Resources and amplified in Huh7.5
hepatoma cells at 33°C. Viral titers were mea-
sured on Huh7.5 cells in a standard plaque
assay. Plasma samples or a commercial anti–
IFN-a2 antibody were serially diluted and
incubated with 20 pM recombinant IFN-a2
for 1 hour at 37°C (starting concentrations:
plasma samples = 1/100 and anti–IFN-a2
antibody = 1/1000). The cell culture me-
dium was then removed and replaced with
the plasma– or antibody–IFN-a2 mixture. The
plates were incubated overnight, and the
plasma– or antibody–IFN-a2 mixture was
removed by aspiration. The cells were washed
once with phosphate-buffered saline (PBS) to
remove potential anti–SARS-CoV-2 neutral-
izing antibodies, and fresh mediumwas then
added. Cells were then infected with SARS-
CoV-2 by directly adding the virus to the wells.
Cells infected at a high multiplicity of infec-
tion (MOI)were incubated at 37°C for 24 hours,
whereas cells infected at a low MOI were
incubated at 33°C for 48 hours. The cells
were fixed with 7% formaldehyde, stained for
SARS-CoV-2 with an anti-N antibody, imaged,
and analyzed as previously described (43).

Nanostring

For the NanoString assay, total RNA was ex-
tracted from whole blood samples collected in
PaxGene tubes. The expression of selected
genes was determined by NanoString meth-
ods and a 28-gene type I IFN score was calcu-
lated (44).
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studies identify a means by which individuals at highest risk of life-threatening COVID-19 can be identified.
either in infected people who were asymptomatic or had milder phenotype or in healthy individuals. Together, these 

 in about 10% of patients with severe COVID-19 pneumonia. These autoantibodies were not foundω2 and IFN-αIFN-
 identified individuals with high titers of neutralizing autoantibodies against type Iet al.course of the infection. Bastard 

immunity. They found enrichment of these genes in patients and conclude that genetics may determine the clinical
identified patients with severe COVID-19 who have mutations in genes involved in the regulation of type I and III IFN 

 used a candidate gene approach andet al.of this system (see the Perspective by Beck and Aksentijevich). Q. Zhang 
componentsexamine the likelihood that genetics affects the risk of severe coronavirus disease 2019 (COVID-19) through 

autoantibody system dampens IFN response to prevent damage from pathogen-induced inflammation. Two studies now
interferons (IFNs). Individuals that lack specific IFNs can be more susceptible to infectious diseases. Furthermore, the 

The immune system is complex and involves many genes, including those that encode cytokines known as
The genetics underlying severe COVID-19
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