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Preface to the second edition

The practice of medical statistics has changed considerably since the first edition

was written. At that time the age of the personal computer was just beginning, and

serious statistical analyses were conducted by specialist statisticians using main-

frame computers. Now, there is ready access to statistical computing—even the

most sophisticated statistical analyses can be done using a personal computer.

This has been accompanied by the growth of the evidence-based medicine move-

ment and a commitment of medical journals to improve the statistical rigour of

papers they publish.

These changes mean that the boundary between what used to be considered

‘basic’ or ‘essential’ statistics and more advanced methods has been blurred.

A statistical analysis presented in a leading general medical journal is more likely

to use logistic regression (formerly considered a specialist technique) than to

present results from �2 tests. In this second edition we describe the most com-

monly used regression models—multiple linear regression, logistic regression,

Poisson regression and Cox regression—and explain how these include many

basic methods as special cases. By including chapters on general issues in regres-

sion modelling, interpretation of analyses and likelihood, we aim to present a

unified view of medical statistics and statistical inference, and to reflect the shift in

emphasis in modern medical statistics from hypothesis testing to estimation. Other

new chapters introduce methods, some relatively new, that allow common prob-

lems in statistical analysis to be addressed; these include meta-analysis, bootstrap-

ping, robust standard errors, and analysis of clustered data.

Our aim throughout has been to retain the strengths of the first edition, by

keeping the emphasis on enabling the reader to know which method to apply

when. We have therefore structured the book into parts relating to the analysis of

different types of outcome variable, and included new chapters on linking analysis

to study design, measures of association and impact, and general strategies for

analysis.

A number of the larger datasets used in the chapters on regression modelling are

available for downloading from the book’s website (www.blackwellpublishing.

com/essentialmedstats), to allow readers to reproduce the analyses presented or

try out further analyses for themselves. Readers are also invited to visit the website

to check for corrections and updates and to give feedback, which we welcome.



In writing this second edition, we have benefited from advice and support from

many colleagues, students and friends. In particular, we would like to thank the

many readers who gave feedback on the first edition and inspired us to embark on

this, Cesar Victora, Kate Tilling and Simon Cousens for so willingly commenting

on early drafts in detail, David Clayton and Michael Hills for generous advice and

unstinting help on many occasions, George Davey Smith for helpful comments on

a number of draft chapters and the late Paul Arthur for his enduring encourage-

ment and advice. We would like to express our appreciation to Christopher Baum,

James Carpenter, Matthias Egger, Stephen Frankel, David Gunnell, Richard

Hayes, Sharon Huttly, Mike Kenward, Peter McCarron, Roger Newson, Steven

Oliver, Andrew Polmear, Bianca de Stavola, and Lesley Wood for helpful discus-

sions and for sharing their insights into statistical issues. We are grateful to James

Carpenter, Erik Christensen, Shah Ebrahim, Alison Elliot, Richard Hayes, David

Kessler, Carl-Johan Lamm, Debbie Lawlor, Steven Oliver, Mary Penny, Seif

Shaheen and Bianca de Stavola, who generously provided datasets for use as

examples. We would also like to thank Maggie Rae and Alan Haworth, whose

generous hospitality facilitated much writing, and last but not least Harriet Aston,

Emily, Kitty and Max Sterne, Alex Khot, and Sam and Daisy Kirkwood, for their

support and the difference they make in our lives.

Betty Kirkwood

Jonathan Sterne
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Preface to the first edition

The aim in writing this book has been to put the multitude of statistical methods

applicable to medical research into their practical context, and in doing this I hope

I have combined simplicity with depth. I have adopted a somewhat different

ordering of topics than found in most books, based on a logical progression of

practical concepts, rather than a formal mathematical development. Statistical

ideas are introduced as and when needed, and all methods are described in the

context of relevant examples drawn from real situations. There is extensive cross-

referencing to link and contrast the alternative approaches which may apply in

similar situations. In this way the reader is led more quickly to the analysis of

practical problems and should find it easier to learn which procedures are applic-

able and when.

This book is suitable for self-instruction, as a companion to lecture courses on

medical statistics, and as a reference text. It covers all topics which a medical

research worker or student is likely to encounter. Some advanced (or uncommon)

methods are described only briefly, and the reader referred to more specialist

books. It is hoped, however, that it will be a rare event to look for a topic in the

index, and not to find even a mention. All formulae are clearly highlighted for easy

reference, and there is a useful summary of methods on the inside front and back

covers.

The book is a concise and straightforward introduction to the basic methods

and ideas of medical statistics. It does not, however, stop here. It is intended also

to be a reasonably comprehensive guide to the subject. For anyone seriously

involved in statistical applications, it is not sufficient just to be able to carry out,

for example, a t test. It is also important to appreciate the limitations of the simple

methods, and to know when and how they should be extended. For this reason,

chapters have been included on, for example, analysis of variance and multiple

regression. When dealing with these more advanced methods the treatment con-

centrates on the principles involved and the interpretation of results, since with the

wide availability of computing facilities it is no longer necessary to acquire

familiarity with the details of the calculations. The more advanced sections may

be omitted at a first reading, as indicated at the relevant points in the text. It is

recommended, however, that the introductions of all chapters are read, as these

put the different methods into context.



The reader will also find such topics as trend tests for contingency tables,

methods of standardization, use of transformations, survival analysis and case–

control studies. The last quarter of the book is devoted to issues involved in the

design and conduct of investigations. These sections are not divorced in any way

from the sections on methods of analysis and reflect the importance of an aware-

ness of statistics throughout the execution of a study. There is a detailed summary

of how to decide on an appropriate sample size, and an introduction to the use of

computers, with much of the common jargon explained.

This book has been compiled from several years’ experience both of teaching

statistics to a variety of medical personnel and of collaborative research. I hope

that the approach I have adopted will appeal to anyone working in or associated

with the field of medical research, and will please medical workers and statisticians

alike. In particular, I hope the result will answer the expressed need of many that

the problem in carrying out statistical work is not so much learning the mechanics

of a particular test, but rather knowing which method to apply when.

I would like to express my gratitude to the many colleagues, students, and

friends who have assisted me in this task. In particular, I would like to thank

David Ross and Cesar Victora for willingly reading early drafts and commenting

in great detail, Richard Hayes for many discussions on teaching over the years,

Laura Rodrigues for sharing her insight into epidemiological methodology with

me, Peter Smith for comments and general support, Helen Edwards for patient

and skilled help with the typing, and Jacqui Wright for assistance in compiling the

appendix tables. I would also like to thank my husband Tom Kirkwood not only

for comments on many drafts, endless discussions and practical help, but also for

providing unfailing support and encouragement throughout. It is to him this book

is dedicated. Finally, I would like to mention Daisy and Sam Kirkwood, whose

birth, although delaying the finalization of an almost complete manuscript, pro-

vided me with an opportunity to take a fresh look at what I had written and make

a number of major improvements.

Betty Kirkwood
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PART A

BASICS

Statistics is the science of collecting, summarizing, presenting and interpreting

data, and of using them to estimate the magnitude of associations and test

hypotheses. It has a central role in medical investigations. Not only does it provide

a way of organizing information on a wider and more formal basis than relying on

the exchange of anecdotes and personal experience, it takes into account the

intrinsic variation inherent in most biological processes. For example, not only

does blood pressure differ from person to person, but in the same person it also

varies from day to day and from hour to hour. It is the interpretation of data in

the presence of such variability that lies at the heart of statistics. Thus, in investi-

gating morbidity associated with a particular stressful occupation, statistical

methods would be needed to assess whether an observed average blood pressure

above that of the general population could simply be due to chance variations or

whether it represents a real indication of an occupational health risk.

Variability can also arise unpredictably (randomly) within a population. Indi-

viduals do not all react in the same way to a given stimulus. Thus, although

smoking and heavy drinking are in general bad for the health, we may hear of a

heavy smoker and drinker living to healthy old age, whereas a non-smoking

teetotaller may die young. As another example, consider the evaluation of a new

vaccine. Individuals vary both in their responsiveness to vaccines and in their

susceptibility and exposure to disease. Not only will some people who are unvac-

cinated escape infection, but also a number of those who are vaccinated may

contract the disease. What can be concluded if the proportion of people free from

the disease is greater among the vaccinated group than among the unvaccinated?

How effective is the vaccine? Could the apparent effect just be due to chance? Or,

was there some bias in the way people were selected for vaccination, for example

were they of different ages or social class, such that their baseline risk of contract-

ing the disease was already lower than those selected into the non-vaccinated

group? The methods of statistical analysis are used to address the first two of

these questions, while the choice of an appropriate design should exclude the third.

This example illustrates that the usefulness of statistics is not confined to the

analysis of results. It also has a role to play in the design and conduct of a study.

In this first part of the book we cover the basics needed to understand data and

commence formal statistical analysis. In Chapter 1 we describe how to use the

book to locate the statistical methods needed in different situations, and to

progress from basic techniques and concepts to more sophisticated analyses.



Before commencing an analysis it is essential to gain an understanding of the data.

Therefore, in Chapter 2 we focus on defining the data, explaining the concepts of

populations and samples, the structure of a dataset and the different types of

variables that it may contain, while in Chapter 3 we outline techniques for

displaying and tabulating data.

2 Part A: Basics



CHAPTER 1

Using this book

1.1 Introduction 1.5 Understanding the links between study

1.2 Getting started (Part A) design, analysis and interpretation (Part F)

1.3 Finding the right statistical 1.6 Trying out our examples

method (Parts B–D) 1.7 This book and evidence-based

1.4 Going further (Part E) medicine

1.1 INTRODUCTION

People usually pick up a statistics book when they have data to analyse, or when

they are doing a course. This has determined the structure of this book. The

ordering of topics is based on a logical progression of both methods and practical

concepts, rather than a formal mathematical development. Because different

statistical methods are needed for different types of data, we start by describing

how to define and explore a dataset (rest of Part A). The next three parts (B, C

and D) then outline the standard statistical approaches for the three main types of

outcome variables (see Section 1.3). Statistical ideas are introduced as needed,

methods are described in the context of relevant examples drawn from real

situations, and the data we have used are available for you to reproduce the

examples and try further analyses (see Section 1.6). In Part E, we introduce a

collection of more advanced topics, which build on common themes in Parts B to

D. These are beyond the scope of most introductory texts. The final part of

the book (Part F) is devoted to issues involved in the design and conduct of a

study, and how to develop an analysis strategy to get the best out of the data

collected.

This book is intended to appeal to a wide audience, and to meet several needs.

It is a concise and straightforward introduction to the basic methods and ideas of

medical statistics, and as such is suitable for self-instruction, or as a companion to

lecture courses. It does not require a mathematical background. However, it is

not just an introductory text. It extends well beyond this and aims to be a

comprehensive reference text for anyone seriously involved in statistical analysis.

Thus it covers the major topics a medical research worker, epidemiologist or

medical statistician is likely to encounter when analysing data, or when reading

a scientific paper. When dealing with the more advanced methods, the focus is on

the principles involved, the context in which they are required and the interpret-

ation of computer outputs and results, rather than on the statistical theory behind

them.



1.2 GETTING STARTED (PART A)

The other chapters in Part A deal with the basics of getting to know your data. In

Chapter 2 (‘Defining the data’) we explain the link between populations and

samples, and describe the different types of variables, while in Chapter 3 we

outline simple techniques for tabulating and displaying them.

In particular, we introduce the distinction between exposure variables or risk

factors (that is variables which influence disease outcomes, including medical

treatments) and outcome variables (the variables whose variation or occurrence

we are seeking to understand). Assessing the size and strength of the influence of

one or more exposure variables on the outcome variable of interest is the core issue

that runs throughout this book, and is at the heart of the majority of statistical

investigations.

1.3 FINDING THE RIGHT STATISTICAL METHOD (PARTS B–D)

The appropriate statistical methods to use depend on the nature of the outcome

variable of interest. Types of outcome variables are described in detail in Chapter

2; they may be essentially one of three types:

1 Numerical outcomes, such as birthweight or cholesterol level.

2 Binary outcomes, summarized as proportions, risks or odds, such as the pro-

portion of children diagnosed with asthma, the proportion of patients in each

treatment group who are no longer hypertensive, or the risk of dying in the first

year of life.

3 Rates of mortality, morbidity or survival measured longitudinally over time,

such as the survival rates following different treatments for breast cancer, or the

number of episodes of diarrhoea per person per year among AIDS patients.

Parts B, C and D comprehensively cover the full range of standard methods for

these three types of outcome respectively, and will be sufficient for the majority of

analysis requirements. The emphasis throughout is on how to choose the right

method for the required analysis, how to execute the method and how to interpret

the results from the computer output. A quick guide to the appropriate statistical

methods for the analysis of the different types of outcome variable is included on

the inside covers.

The key concepts underlying statisticalmethods are all introduced in Part B in the

context of analysing numerical outcomes, but they apply equally to all the statistical

methods in the book. Statistics is used to evaluate the association between an

exposure variable and the outcome of interest. More specifically, it is used to

measure this association in the data collected from the particular sample of individ-

uals in our study and to make inferences about its likely size and strength in the

population from which the sample was derived. In Chapter 6, we introduce the use

of a confidence interval, to give a range of values within which the size of the

association in the population is likely to lie, taking into account sampling variation

and standard error, which reflect the inherent variation between individuals.

BPL : Check
Correct
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Hypothesis tests (also known as significance tests) and P-values, introduced in

Chapter 7, are used to assess the strength of the evidence against the null hypothesis

that there is no true association in the population fromwhich the samplewas drawn.

The methods in these three core parts of the book range from simple techniques

such as t-tests or chi-squared tests for comparing two exposure groups, to the use

of regression models for examining the effect of several exposure variables.

Throughout we aim to show how these regression models arise as natural exten-

sions to the simpler methods. These more sophisticated analyses are no longer the

preserve of the trained statistician. They are widely available in statistical software

packages and can be used by anyone with a desktop or notebook/laptop com-

puter, and a moderate level of computer expertise. The more advanced sections can

be omitted at a first reading, as indicated at the relevant points in the text. It is

recommended, however, that the introductions of all chapters be read, as these put

the different methods into context.

1.4 GOING FURTHER (PART E)

Parts B, C and D comprehensively cover the full range of standard methods for the

three types of outcome variables. This range of methods will be sufficient for the

majority of analysis requirements. Part E is for those who wish to go further, and to

understand general issues in statistical modelling. It can be omitted until needed.

In Part E we explain the idea of likelihood, upon which most statistical methods

are based, discuss generic issues in regression modelling, so that skills learned in

applying one type of regression model can be applied directly to the others, and

describemethods that allow us to relax the assumptionsmade in standard statistical

methods. We also include chapters for two specialised areas of analysis. The first is

the analysis of clustered data, which arise, for example, in cluster-randomized trials

where communities, rather than individuals, are randomized to receive the inter-

vention or to act as control. The second is on systematic reviews andmeta-analyses,

which synthesize findings from several independent studies. Finally, we include a

brief overview of the Bayesian approach to statistical inference.

In these more advanced chapters our emphasis is on a practical approach,

focussing on what the reader needs to know to conduct such analyses, and what

is needed to critically appraise their reporting in scientific papers. However, we

recommend that only the introductions of the chapters be attempted at first

reading. The detail can be omitted and used only when the necessity arises, and/

or the reader has acquired experience of basic regression modelling.

1.5 UNDERSTANDING THE LINKS BETWEEN STUDY DESIGN,

ANALYSIS AND INTERPRETATION (PART F)

The results of a study are only as good as the data on which they are based. Part F

addresses the links between study design, analysis and interpretation. It starts by

explaining how to choose the right analysis for each of the main types of study

AQ1
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Fig. 1.1 Organization of this book.

design. It then describes how to choose an appropriate sample size, the effects of

measurement error and misclassification, and the different ways in which associ-

ations can be measured and interpreted.

Finally, it is essential to plan and conduct statistical analyses in a way that

maximizes the quality and interpretability of the findings. In a typical study, data

are collected on a large number of variables, and it can be difficult to decide which

methods to use and in what order. In Part F we aim to navigate you through this,

by describing how to plan and conduct an analysis. Time invested here before you

start pays off. Millions of trees must have been sacrificed to unplanned data

analyses, where the data were looked at in every way imaginable. Equally often,

gaps in analyses are discovered when the analyst tries to present the results. In fact

it is not uncommon for people to find themselves going back to the drawing board

at this stage. Careful planning of analyses should avoid these frustrations.

Of course, the issues discussed in Part F will affect all stages of the analysis of a

study. This is illustrated in Figure 1.1, which shows how this book is organized.

1.6 TRYING OUT OUR EXAMPLES

Almost all statistical analyses are now done using computers, and all but very large

datasets (those with measurements made on hundreds of thousands of individuals)

can now be analysed using standard (desktop or laptop) office or home computers.

Although simple analyses can be done with a hand-held calculator, even for these

the use of a computer is recommended because results will be produced more

quickly and be more accurate. For more complex analyses it is essential to use

computers. Computers also allow production of high quality graphical displays.

6 Chapter 1: Using this book



For these reasons, we have conducted all analyses in this book using a computer.

We have done these using the statistical package Stata (Stata Corporation, College

Station, TX, USA; see www.stata.com). For simple analyses, we have included raw

data where possible to enable readers to try out our examples for themselves. Most

regression analyses presented in this book are based on datasets that are available

for downloading from the book’s web site, at www.blackwellpublishing.com/

EssentialMedStats. Readers may wish to use these datasets either to check that they

can reproduce the analyses presented in the book, or to practice further analyses.

In general, hand-held calculators do not provide facilities to perform a large

enough range of statistical analyses for most purposes. In particular, they do not

allow the storage of data or analysis commands that are needed to make sure that

an analysis can be reproduced (see Chapter 38). However, calculators are useful

for quick calculations and checking of results (both one’s own and those in

scientific papers). The minimum requirements are keys for scientific functions

(such as square root and logarithm) and at least one memory. The new generation

of handheld computers and personal organizers is blurring the distinction between

calculators and computers, and it is likely that statistical software for such devices

will become available in the future.

1.7 THIS BOOK AND EVIDENCE-BASED MEDICINE

As discussed above, statistics is the science of collecting, summarizing, presenting

and interpreting data, and of using them to estimate the size and strengths of

associations between variables. The core issue in medical statistics is how to assess

the size and strength of the influence of one or more exposure variables (risk

factors or treatments) on the outcome variable of interest (such as occurrence of

disease or survival). In particular it aims to make inferences about this influence

by studying a selected sample of individuals and using the results to make more

general inferences about the wider population from which the sample was drawn.

The approach of evidence-based medicine is like a mirror to this. Inferences are

made the other way around; by appraising the evidence based on the average effect

of a treatment (or exposure) assessed on a large number of people, and judging its

relevance to the management of a particular patient. More specifically, practition-

ers need to ask themselves what to consider before they can assume that the general

finding will apply to a particular patient. For example, does the patient share

the same characteristics as the group from which the evidence was gathered, such

as age, sex, ethnic group, social class and the profile of related risk factors, such as

smoking or obesity?

The evidence that the practitioner needs to appraise may come from a single

study or, increasingly, from a systematic review of many. There has been an

explosion in research evidence in recent decades: over two million articles are

published annually in the biomedical literature and it is common for important

issues to be addressed in several studies. Indeed, we might be reluctant to introduce

a new treatment based on the result of one trial alone. A systematic review, or

AQ2
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overview, of the literature is a ‘systematic assembly, critical appraisal and synthesis

of all relevant studies on a specific topic’. The statistical methods for combining the

results of a number of studies are known asmeta-analysis. It should be emphasized

that not all systematic reviews will contain a meta-analysis: this depends on the

systematic review having located studies which are sufficiently similar that it is

reasonable to consider combining their results. The increase in interest in meta-

analysis is illustrated by the fact that while in 1987 there were 25 MEDLINE

citations using the term ‘meta-analysis’; this had increased to around 380 by 1991

and around 580 by 2001.

The majority of practitioners are concerned with using and appraising this

evidence base, whereas the main focus of this book is on how to conduct the

statistical analyses of studies that contribute to the evidence base. There are

several excellent specialized evidence-based medicine books that lay out the issues

in critically appraising a scientific paper or systematic review. We have therefore

decided to refer the reader to these, rather than including a detailed discussion of

critical appraisal in this book. We recommend Crombie (1996), Clarke and Croft

(1998), Silagy and Haines (1998), Greenhalgh (2000) and Sackett et al. (2000).

The parts of this book that are particularly relevant to those practising evi-

dence-based medicine are Chapters 32, 34 and 37. Thus in Chapter 32 on ‘System-

atic reviews and meta-analysis’, we include a discussion of the sources of bias in

meta-analysis and how these may be detected. In Chapter 34 we briefly review the

most important aspects of the quality of randomized controlled trials. In Chapter

37 we describe the various different ‘Measures of association and impact’ and how

to interpret them. These include numbers needed to treat or harm as well as risk

ratios, odds ratios, attributable risks and absolute risk reductions. In addition, this

book will be a useful companion for any practitioner who, as well as appraising

the quality and relevance of the evidence base, wishes to understand more about

the statistics behind the evidence generated.

AQ4
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CHAPTER 2

Defining the data

2.1 Populations and samples Variables based on threshold values

2.2 Types of variable Variables derived from reference curves,

Numerical variables based on standard population values

Binary and other categorical values Transformed variables

Rates 2.4 Distinguishing between outcome

2.3 Derived variables and exposure variables

Calculated or categorized from

recorded variables

2.1 POPULATIONS AND SAMPLES

Except when a full census is taken, we collect data on a sample from a much larger

group called the population. The sample is of interest not in its own right, but for

what it tells the investigator about the population. Statistics allows us to use the

sample to make inferences about the population from which it was derived, as

illustrated in Figure 2.1. Because of chance, different samples from the population

will give different results and thismust be taken into account when using a sample to

make inferences about the population. This phenomenon, called sampling variation,

lies at the heart of statistics. It is described in detail in Chapter 4.

The word ‘population’ is used in statistics in a wider sense than usual. It is not

limited to a population of people but can refer to any collection of objects. For

Fig. 2.1 Diagram to show the role of statistics in using information from a sample to make inferences about

the population from which the sample was derived.



example, the data may relate to a sample of 20 hospitals from the population of

all hospitals in the country. In such a case it is easy to imagine that the entire

population can be listed and the sample selected directly from it. In many

instances, however, the population and its boundaries are less precisely specified,

and care must be taken to ensure that the sample truly represents the population

about which information is required. This population is sometimes referred to as

the target population. For example, consider a vaccine trial carried out using

student volunteers. If it is reasonable to assume that in their response to

the vaccine and exposure to disease students are typical of the community at

large, the results will have general applicability. If, on the other hand, students

differ in any respect which may materially affect their response to the vaccine

or exposure to disease, the conclusions from the trial are restricted to the popula-

tion of students and do not have general applicability. Deciding whether or

not ‘students are typical’ is not a statistical issue, but depends on an informed

judgement taking into account relevant biological and epidemiological

knowledge.

Note that the target population often includes not only all persons living at

present but also those that may be alive at some time in the future. This is the case

in this last example evaluating the efficacy of the vaccine. It is obvious that the

complete enumeration of such a population is not possible.

2.2 TYPES OF VARIABLE

The raw data of an investigation consist of observations made on individuals. In

many situations the individuals are people, but they need not be. For instance,

they might be red blood cells, urine specimens, rats, or hospitals. The number of

individuals is called the sample size. Any aspect of an individual that is measured,

like blood pressure, or recorded, like age or sex, is called a variable. There may be

only one variable in a study or there may be many. For example, Table 2.1 shows

the first six lines of data recorded in a study of outcome of treatment in tubercu-

losis patients treated in three hospitals. Each row of the table shows the data

collected on a particular individual, while the columns of the table show the

different variables which have been collected.

Table 2.1 First six lines of data from a study of outcome after diagnosis of tuberculosis.

Id Hospital Date of birth Sex

Date of

diagnosis

Weight

(kg)

Smear

result

Culture

result

Skin test

diameter

(mm)

Alive after

6 months?

001 1 03/12/1929 M 23/08/1998 56.3 Positive Negative 18 Y

002 1 13/04/1936 M 12/09/1998 73.5 Positive Negative 15 Y

003 1 31/10/1931 F 17/06/1999 57.6 Positive Positive 21 N

004 2 11/11/1922 F 05/07/1999 65.6 Uncertain Positive 28 Y

005 2 01/05/1946 M 20/08/1999 81.1 Negative Positive 6 Y

006 3 18/02/1954 M 17/09/1999 56.8 Positive Negative 12 Y

10 Chapter 2: Defining the data



A first step in choosing how best to display and analyse data is to classify the

variables into their different types, as different methods pertain to each. The main

division is between numerical (or quantitative) variables, categorical (or qualita-

tive) variables and rates.

Numerical variables

A numerical variable is either continuous or discrete. A continuous variable, as the

name implies, is a measurement on a continuous scale. In Table 2.1, weight is a

continuous variable. In contrast, a discrete variable can only take a limited

number of discrete values, which are usually whole numbers, such as the number

of episodes of diarrhoea a child has had in a year.

Binary and other categorical variables

A categorical variable is non-numerical, for instance place of birth, ethnic group,

or type of drug. A particularly common sort is a binary variable (also known as a

dichotomous variable), which has only two possible values. For example, sex is

male or female, or the patient may survive or die. We should also distinguish

ordered categorical variables, whose categories, although non-numerical, can be

considered to have a natural ordering. A common example of an ordered categor-

ical variable is social class, which has a natural ordering from most deprived to

most affluent. Table 2.2 shows the possible categories and sub-types of variable

for each of the categorical variables in the data displayed in Table 2.1. Note that it

could be debated whether smear result should be classified as ordered categorical

or simply as categorical, depending on whether we can assume that ‘‘uncertain’’ is

intermediate between ‘negative’ and ‘positive’.

Rates

Rates of disease are measured in follow-up studies, and are the fundamental

measure of the frequency of occurrence of disease over time. Their analysis

forms the basis for Part D, and their exact definition can be found there. Examples

include the survival rates following different treatments for breast cancer, or the

number of episodes of diarrhoea/person/year among AIDS patients.

Table 2.2 Categorical (qualitative) variables recorded in the study of outcome after

diagnosis of tuberculosis.

Variable Categories Type of variable

Hospital 1, 2, 3 Categorical

Sex Male, female Binary

Smear result Negative, uncertain, positive Ordered categorical

Culture result Negative, positive Binary

Alive at 6 months? No, yes Binary

2.2 Types of variable 11



2.3 DERIVED VARIABLES

Often, the variables included in a statistical analysis will be derived from those

originally recorded. This may occur in a variety of different ways, and for a variety

of reasons.

Calculated or categorized from recorded variables

We commonly derive a patient’s age at diagnosis (in years) by calculating the

number of days between their date of birth and date of diagnosis, and dividing this

by 365.25 (the average number of days in a year, including leap years). We will

often proceed to categorize age into age groups, for example we might define ten-

year age groups as 30 to 39, 40 to 49, and so on. Age group is then an ordered

categorical variable.

Another example is where the range of values observed for average monthly

income is used to divide the sample into five equally-sized income groups (quintiles,

see Section 3.3), and a new variable ‘income group’ created with ‘1’ corresponding

to the least affluent group in the population and ‘5’ to the most affluent group.

Similarly, body mass index (BMI), which is calculated by dividing a person’s

weight (in kg) by the square of their height (in m), may be categorized into a

5-point scale going from <16 kg=m2 being malnourished to �30 kg=m2 defining

obese. In contrast to the income group variable where the categorization is specific

to the particular set of data, the categorization of the BMI scale has been carried

out using conventionally agreed cut-off points to define the different groups. This

type of variable, where the categorizing is based on pre-defined threshold values, is

described in the next paragraph.

Variables based on threshold values

A particular group of derived variables are those based on threshold values of a

measured variable. Two examples are given in Table 2.3. LBW is a binary variable

for low birthweight (‘yes’ if the baby’s birthweight was below 2500 g, and ‘no’ if

Table 2.3 Examples of derived variables based on

threshold values.

Derived variable Original variable

LBW (Low birthweight): Birthweight:

Yes < 2500 g

No � 2500 g

Vitamin A status: Serum retinol level:

Severe deficiency < 0:35mmol=l

Mild/moderate deficiency 0:35�0:69mmol=l
Normal � 0:70mmol=l
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the birthweight was 2500 g or above). Vitamin A status is an ordered categorical

variable, derived from the serum retinol level.

Variables derived from reference curves, based on standard population

values

A more refined comparison is based on comparing the value of a variable for the

individual with reference curves based on the average and range of values for

the whole population. For example, a child’s growth can be monitored by plotting

his/her weight (and height) against standard growth curves. This allows not only an

assessment of where the child’s weight (or height) lays compared to the average

child at this age, but also allows growth faltering to be detected, if their growth

curve appears to be dropping below what is usually expected for a child with their

birthweight. How to calculate variables derived from a comparison with reference

curves is postponed until Chapter 13 (‘Transformations’) at the end of Part B,

since it requires an understanding of means, the normal distribution and z-scores,

all of which are covered in Part B.

Transformed variables

In some cases it may be necessary to transform a numerical variable onto another

scale in order to make it satisfy the assumptions needed for the relevant statistical

methods. The logarithmic transformation, in which the value of the variable is

replaced by its logarithm, is by far the most frequently applied. Its use is appro-

priate for a great variety of variables including incubation periods, parasite

counts, titres, dose levels, concentrations of substances, and ratios. The reasons

why a variable should be transformed, the different types of transformation,

and how to choose between them are covered in detail in Chapter 13 at the end

of part B.

2.4 DISTINGUISHING BETWEEN OUTCOME AND EXPOSURE

VARIABLES

In order to choose appropriate data displays and statistical methods, it is very

important to distinguish between outcome and exposure variables, in addition to

identifying the types of each of the variables in the data set. The outcome variable

is the variable that is the focus of our attention, whose variation or occurrence we

are seeking to understand. In particular we are interested in identifying factors, or

exposures, that may influence the size or the occurrence of the outcome variable.

Some examples are given in Table 2.4. The purpose of a statistical analysis is to

quantify the magnitude of the association between one or more exposure variables

and the outcome variable.

A number of different terms are used to describe exposure and outcome vari-

ables, depending on the context. These are listed in Table 2.5. In particular, in a
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Table 2.4 Examples of outcome and exposure variables.

Outcome variable Exposure variable

Baby born with low birth weight (yes, no) Mother smoked during pregnancy (yes, no)

Anthropometric status at 1 year of age (weight-for-age

z-score)

Duration of exclusive breastfeeding (weeks)

Number of diarrhoea episodes experienced in a year Access to clean water supply (yes, no)

Child develops leukaemia (yes, no) Proximity to nuclear power station (miles)

Survival time (months) following diagnosis of lung

cancer

Socio-economic status (6 groups)

Table 2.5 Commonly used alternatives for describing

exposure and outcome variables.

Outcome variable Exposure variable

Response variable Explanatory variable

Dependent variable Independent variable

y-variable x-variable

Case–control group Risk factor

Treatment group

clinical trial (see Chapter 34) the exposure is the treatment group, and in a case–

control study, the outcome is the case–control status, and the exposure variables

are often called risk factors.

The type of outcome variable is particularly important in determining the most

appropriate statistical method. Part B of this book describes statistical methods

for numerical outcome variables. Part C describes methods for binary outcome

variables, with a brief description (Section 20.5) of methods for categorical out-

comes with more than two types of response. Part D describes methods to be used

for rates, arising in studies with binary outcomes in which individuals are followed

over time.

AQ1
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CHAPTER 3

Displaying the data

3.1 Introduction 3.3 Cumulative frequency distributions,

3.2 Frequencies, frequency quantiles and percentiles

distributions and histograms Cumulative frequency distributions

Frequencies (categorical variables) Median and quartiles

Frequency distributions Quantiles and percentiles

(numerical variables) 3.4 Displaying the association between

Histograms two variables

Frequency polygon Cross tabulations

Frequency distribution of the Scatter plots

population 3.5 Displaying time trends

Shapes of frequency distributions

3.1 INTRODUCTION

With ready access to statistical software, there is a temptation to jump straight

into complex analyses. This should be avoided. An essential first step of an

analysis is to summarize and display the data. The familiarity with the data gained

through doing this is invaluable in developing an appropriate analysis plan (see

Chapter 38). These initial displays are also valuable in identifying outliers (unusual

values of a variable) and revealing possible errors in the data, which should be

checked and, if necessary, corrected.

This chapter describes simple tabular and graphical techniques for displaying the

distribution of values taken by a single variable, and for displaying the association

between the values of two variables. Diagrams and tables should always be clearly

labelled and self-explanatory; it should not be necessary to refer to the text to

understand them. At the same time they should not be cluttered with too much

detail, and they must not be misleading.

3.2 FREQUENCIES, FREQUENCY DISTRIBUTIONS AND HISTOGRAMS

Frequencies (categorical variables)

Summarizing categorical variables is straightforward, the main task being to

count the number of observations in each category. These counts are called

frequencies. They are often also presented as relative frequencies; that is as propor-

tions or percentages of the total number of individuals. For example, Table 3.1

summarizes the method of delivery recorded for 600 births in a hospital. The



Table 3.1 Method of delivery of 600 babies born in a hospital.

Method of delivery No. of births Percentage

Normal 478 79.7

Forceps 65 10.8

Caesarean section 57 9.5

Total 600 100.0

variable of interest is the method of delivery, a categorical variable with three

categories: normal delivery, forceps delivery, and caesarean section.

Frequencies and relative frequencies are commonly illustrated by a bar chart

(also known as a bar diagram) or by a pie chart. In a bar chart the lengths of the

bars are drawn proportional to the frequencies, as shown in Figure 3.1. Alterna-

tively the bars may be drawn proportional to the percentages in each category; the

shape is not changed, only the labelling of the scale. In either case, for ease of

reading it is helpful to write the actual frequency and/or percentage to the right of

the bar. In a pie chart (see Figure 3.2), the circle is divided so that the areas of the

sectors are proportional to the frequencies, or equivalently to the percentages.

Frequency distributions (numerical variables)

If there are more than about 20 observations, a useful first step in summarizing a

numerical (quantitative) variable is to form a frequency distribution. This is a table

showing the number of observations at different values or within certain ranges.

For a discrete variable the frequencies may be tabulated either for each value of

the variable or for groups of values. With continuous variables, groups have to be

formed. An example is given in Table 3.2, where haemoglobin has been measured

Fig. 3.1 Bar chart showing method of delivery of 600 babies born in a hospital.
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Fig. 3.2 Pie chart showing method of delivery of 600 babies born in a hospital.

to the nearest 0.1 g/100ml and the group 11–, for example, contains all measure-

ments between 11.0 and 11.9 g/100ml inclusive.

When forming a frequency distribution, the first things to do are to count the

number of observations and to identify the lowest and highest values. Then decide

Table 3.2 Haemoglobin levels in g/100ml for 70 women.

(a) Raw data with the highest and lowest values underlined.

10.2 13.7 10.4 14.9 11.5 12.0 11.0

13.3 12.9 12.1 9.4 13.2 10.8 11.7

10.6 10.5 13.7 11.8 14.1 10.3 13.6

12.1 12.9 11.4 12.7 10.6 11.4 11.9

9.3 13.5 14.6 11.2 11.7 10.9 10.4

12.0 12.9 11.1 8.8 10.2 11.6 12.5

13.4 12.1 10.9 11.3 14.7 10.8 13.3

11.9 11.4 12.5 13.0 11.6 13.1 9.7

11.2 15.1 10.7 12.9 13.4 12.3 11.0

14.6 11.1 13.5 10.9 13.1 11.8 12.2

(b) Frequency distribution.

Haemoglobin (g/100ml) No. of women Percentage

8– 1 1.4

9– 3 4.3

10– 14 20.0

11– 19 27.1

12– 14 20.0

13– 13 18.6

14– 5 7.1

15–15.9 1 1.4

Total 70 100.0
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whether the data should be grouped and, if so, what grouping interval should be

used. As a rough guide one should aim for 5–20 groups, depending on the number

of observations. If the interval chosen for grouping the data is too wide, too much

detail will be lost, while if it is too narrow the table will be unwieldy. The starting

points of the groups should be round numbers and, whenever possible, all the

intervals should be of the same width. There should be no gaps between groups.

The table should be labelled so that it is clear what happens to observations that

fall on the boundaries.

For example, in Table 3.2 there are 70 haemoglobin measurements. The lowest

value is 8.8 and the highest 15.1 g/100ml. Intervals of width 1 g/100ml were

chosen, leading to eight groups in the frequency distribution. Labelling the groups

8–, 9–, . . . is clear. An acceptable alternative would have been 8.0–8.9, 9.0–9.9 and

so on. Note that labelling them 8–9, 9–10 and so on would have been confusing,

since it would not then be clear to which group a measurement of 9.0 g/100ml, for

example, belonged.

Once the format of the table is decided, the numbers of observations in

each group are counted. If this is done by hand, mistakes are most easily avoided

by going through the data in order. For each value, a mark is put against

the appropriate group. To facilitate the counting, these marks are arranged

in groups of five by putting each fifth mark horizontally through the previous

four (1111); these groups are called five-bar gates. The process is called tally-

ing.

As well as the number of women, it is useful to show the percentage of women in

each of the groups.

Histograms

Frequency distributions are usually illustrated by histograms, as shown in Figure

3.3 for the haemoglobin data. Either the frequencies or the percentages may be

used; the shape of the histogram will be the same.

The construction of a histogram is straightforward when the grouping intervals

of the frequency distribution are all equal, as is the case in Figure 3.3. If the

intervals are of different widths, it is important to take this into account when

drawing the histogram, otherwise a distorted picture will be obtained. For

example, suppose the two highest haemoglobin groups had been combined in

compiling Table 3.2(b). The frequency for this combined group (14.0–

15.9 g/100ml) would be six, but clearly it would be misleading to draw a rectangle

of height six from 14 to 16 g/100ml. Since this interval would be twice the width of

all the others, the correct height of the line would be three, half the total frequency

for this group. This is illustrated by the dotted line in Figure 3.3. The general

rule for drawing a histogram when the intervals are not all the same width is to

make the heights of the rectangles proportional to the frequencies divided by the

widths, that is to make the areas of the histogram bars proportional to

the frequencies.
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Fig. 3.3 Histogram of haemoglobin levels of 70 women.

Frequency polygon

An alternative but less common way of illustrating a frequency distribution is a

frequency polygon, as shown in Figure 3.4. This is particularly useful when compar-

ing two ormore frequency distributions by drawing them on the same diagram. The

polygon is drawn by imagining (or lightly pencilling) the histogram and joining

Fig. 3.4 Frequency polygon of haemoglobin levels of 70 women.

3.2 Frequencies, frequency distributions and histograms 19



the midpoints of the tops of its rectangles. The endpoints of the resulting line are

then joined to the horizontal axis at the midpoints of the groups immediately

below and above the lowest and highest non-zero frequencies respectively. For the

haemoglobin data, these are the groups 7.0–7.9 and 16.0–16.9 g/100ml. The

frequency polygon in Figure 3.4 is therefore joined to the axis at 7.5 and

16.5 g/100ml.

Frequency distribution of the population

Figures 3.3 and 3.4 illustrate the frequency distribution of the haemoglobin levels

of a sample of 70 women. We use these data to give us information about the

distribution of haemoglobin levels among women in general. For example, it

seems uncommon for a woman to have a level below 9.0 g/100ml or above

15.0 g/100ml. Our confidence in drawing general conclusions from the data

depends on how many individuals were measured. The larger the sample, the

finer the grouping interval that can be chosen, so that the histogram (or frequency

polygon) becomes smoother and more closely resembles the distribution of the

total population. At the limit, if it were possible to ascertain the haemoglobin

levels of the whole population of women, the resulting diagram would be a smooth

curve.

Shapes of frequency distributions

Figure 3.5 shows three of the most common shapes of frequency distributions.

They all have high frequencies in the centre of the distribution and low frequencies

at the two extremes, which are called the upper and lower tails of the distribution.

The distribution in Figure 3.5(a) is also symmetrical about the centre; this shape of

curve is often described as ‘bell-shaped’. The two other distributions are asym-

metrical or skewed. The upper tail of the distribution in Figure 3.5(b) is longer

than the lower tail; this is called positively skewed or skewed to the right. The

distribution in Figure 3.5(c) is negatively skewed or skewed to the left.

All three distributions in Figure 3.5 are unimodal, that is they have just one peak.

Figure 3.6(a) shows a bimodal frequency distribution, that is a distribution with two

peaks. This is occasionally seen and usually indicates that the data are a mixture of

Fig. 3.5 Three common shapes of frequency distributions with an example of each.
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Fig. 3.6 Three less-common shapes of frequency distributions with an example of each.

two separate distributions. Also shown in Figure 3.6 are two other distributions

that are sometimes found, the reverse J-shaped and the uniform distributions.

3.3 CUMULATIVE FREQUENCY DISTRIBUTIONS, QUANTILES

AND PERCENTILES

Cumulative frequency distributions

Frequency distributions (and histograms) indicate the way data are distributed

over a range of values, by showing the number or percentage of individuals within

each group of values. Cumulative distributions start from the lowest value and

show how the number and percentage of individuals accumulate as the values

increase. For example, the cumulative frequency distribution for the first five

observations of haemoglobin levels is shown in Table 3.3. There were 70 observa-

tions, so each represents 100/70¼ 1.43% of the total distribution. Rounding to one

decimal place, the first observation (8.8 g/100ml) corresponds to 1.4% of the

distribution, the first and second observations to 2.9% of the distribution, and

so on. Table 3.3 shows the values of these cumulative percentages, for different

observations in the range of observed haemoglobin levels in the 70 women. A total

of four women (5.7%) had levels below 10 g/100ml. Similarly, 18 women (25.7%)

had haemoglobin levels below 11 g/100ml.

The cumulative frequency distribution is illustrated in Figure 3.7. This is drawn

as a step function: the vertical jumps correspond to the increases in the cumulative

percentages at each observed haemoglobin level. (Another example of plots that

use step functions is Kaplan–Meier plots of cumulative survival probabilities over

time; see Section 26.3.) Cumulative frequency curves are steep where there is a

concentration of values, and shallow where values are sparse. In this example,

where the majority of haemoglobin values are concentrated in the centre of the

distribution, the curve is steep in the centre, and shallow at low and high values. If

the haemoglobin levels were evenly distributed across the range, then the cumula-

tive frequency curve would increase at a constant rate; all the steps would be the

same width as well as the same height. An advantage of cumulative frequency

distributions is that they display the shape of the distribution without the need for

grouping, as required in plotting histograms (see Section 3.2). However the shape

of a distribution is usually more clearly seen in a histogram.
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Table 3.3 Cumulative percentages for different ranges of haemoglobin levels of 70 women.

Observation

Cumulative

percentage

Haemoglobin level

(g/100ml) Quartile

1 1.4 8.8 Minimum ¼ 8.8 1

2 2.9 9.3 1

3 4.3 9.4 1

4 5.7 9.7 1

5 7.1 10.2
..
. ..

. ..
.

15 21.4 10.8 1

16 22.9 10.9 1

17 24.3 10.9 1

18 25.7 10.9
Lower quartile ¼ 10.9

1

19 27.1 11.0 2

20 28.6 11.0 2
..
. ..

. ..
.

33 47.1 11.7 2

34 48.6 11.8 2

35 50.0 11.8
Median ¼ 11.85

2

36 51.4 11.9 3

37 52.9 11.9 3

38 54.3 12.0 3
..
. ..

. ..
.

50 71.4 12.9 3

51 72.9 12.9 3

52 74.3 13.0 3

53 75.7 13.1 Upper quartile ¼ 13.1 4

54 77.1 13.1 4

55 78.6 13.2 4
..
. ..

. ..
.

66 94.3 14.6 4

67 95.7 14.6 4

68 97.1 14.7 4

69 98.6 14.9 4

70 100 15.1 Maximum ¼ 15.1 4

Median and quartiles

Cumulative frequency distributions are useful in recoding a numerical variable

into a categorical variable. The median is the midway value; half of the distribu-

tion lies below the median and half above it.

Median ¼ (nþ 1)th

2
value of the ordered observations

(n ¼ number of observations)
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Fig. 3.7 Cumulative frequency distribution of haemoglobin levels of 70 women, with the median marked by

a circle, and lower and upper quartiles marked by squares.

For the haemoglobin data, the median is the 71=2 ¼ 35:5th observation and so

we take the average of the 35th and 36th observations. Thus the median is (11:8þ
11:9)=2 ¼ 11:85, as shown in Table 3.3. Calculation of the median is also described

in Section 4.2.When the sample size is reasonably large, themedian can be estimated

from the cumulative frequency distribution; it is the haemoglobin value correspond-

ing to the point where the 50% line crosses the curve, as shown in Figure 3.7.

Also marked on Figure 3.7 are the two points where the 25% and 75% lines

cross the curve. These are called the lower and upper quartiles of the distribution,

respectively, and together with the median they divide the distribution into four

equally-sized groups.

Lower quartile ¼ (nþ 1)th

4
value of the ordered observations

Upper quartile ¼ 3� (nþ 1)th

4
value of the ordered observations

In the haemoglobin data, the lower quartile is the 71=4 ¼ 17:75th observation.

This is calculated by taking three quarters of the difference between the 17th and

18th observations and adding it to the 17th observation. Since both the 17th

and 18th observations equal 10.9 g/100ml, so does the lower quartile, as shown
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in Table 3.3. Similarly, 3� 71=4 ¼ 53:25, and since both the 53rd and 54th

observations equal 13.1 g/100ml, so does the upper quartile.

The range of the distribution is the difference between the minimum and

maximum values. From Table 3.3, the minimum and maximum values for the

haemoglobin data are 8.8 and 15.1 g/100ml, so the range is 15:1� 8:8 ¼ 6:3 g/

100ml. The difference between the lower and upper quartiles of the haemoglobin

data is 2.2 g/100ml. This is known as the interquartile range.

Range ¼ highest value� lowest value

Interquartile range ¼ upper quartile� lower quartile

A useful plot, based on these values, is a box and whiskers plot, as shown in

Figure 3.8. The box is drawn from the lower quartile to the upper quartile; its

length gives the interquartile range. The horizontal line in the middle of the box

represents the median. Just as a cat’s whiskers mark the full width of its body, the

‘whiskers’ in this plot mark the full extent of the data. They are drawn on either

end of the box to the minimum and maximum values.

The right hand column of Table 3.3 shows how the median and lower and upper

quartiles may be used to divide the data into equally sized groups called quartiles.

Fig. 3.8 Box and whiskers plot of the distribution of the haemoglobin levels of 70 women.
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Values between 8.8 and 10.9 g/100ml are in the first quartile, those between 11 and

11.8 g/100ml are in the second quartile and so on. Note that equal values should

always be placed in the same group, even if the groups are then of slightly different

sizes.

Quantiles and percentiles

Equal-sized divisions of a distribution are called quantiles. For example, we may

define tertiles, which divide the data into three equally-sized groups, and quintiles,

which divide them into five. An example was described in Section 2.3, where the

range of values observed for average monthly income was used to divide the

sample into five equally-sized income groups, and a new variable ‘income group’

created with ‘1’ corresponding to the least affluent group in the population and ‘5’

to the most affluent group. Quintiles are estimated from the intersections with the

cumulative frequency curve of lines at 20%, 40%, 60% and 80%. Divisions into ten

equally sized groups are called deciles.

More generally, the kth percentile (or centile as it is also called) is the point

below which k% of the values of the distribution lie. For a distribution with n

observations, it is defined as:

kth percentile ¼ k� (nþ 1)th

100
value of ordered observations

It can also be estimated from the cumulative frequency curve; it is the x value

corresponding to the point where a line drawn at k% intersects the curve. For

example, the 5% point of the haemoglobin values is estimated to be 9.6 g/100ml.

3.4 DISPLAYING THE ASSOCIATION BETWEEN TWO VARIABLES

Having examined the distribution of a single variable, we will often wish to display

the way in which the distribution of one variable relates to the distribution of

another.Appropriatemethods todo thiswill dependon the typeof the twovariables.

Cross tabulations

When both variables are categorical, we can examine their relationship informally

by cross-tabulating them in a contingency table. A useful convention is for the rows

of the table to correspond to the exposure values and the columns to the out-

comes. For example, Table 3.4 shows the results from a survey to compare the

principal water sources in 150 households in three villages in West Africa. In this

example, it would be natural to ask whether the household’s village affects their

likely water source, so that water source is the outcome and village is the exposure.
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Table 3.4 Comparison of principal sources of water

used by household in three villages in West Africa.

Water source

Village River Pond Spring

A 20 18 12

B 32 20 8

C 18 12 10

The interpretability of contingency tables can be improved by including

marginal totals and percentages:

� The marginal row totals show the total number of households in each village,

and the marginal columns show the total numbers using each water source.

� Percentages (or proportions) can be calculated with respect to the row variable,

the column variable, or the total number of individuals. A useful guide is that

the percentages should correspond to the exposure variable. If the exposure is

the row variable, as here, then row percentages should be presented, whereas if

it is the column variable then column percentages should be presented.

In Table 3.4, the exposure variable, village, is the row variable, and Table 3.5

therefore shows row percentages together with marginal (row and column) totals.

We can now see that, for example, the proportion of households mainly using a

river was highest in Village B, while village A had the highest proportion of

households mainly using a pond. By examining the column totals we can see that

overall, rivers were the principal water source for 70 (47%) of the 150 households.

Table 3.5 Comparison of principal sources of water used by households in three

villages in West Africa, including marginal totals and row percentages.

Water source

Village River Pond Spring Total

A 20 (40%) 18 (36%) 12 (24%) 50 (100%)

B 32 (53%) 20 (33%) 8 (13%) 60 (100%)

C 18 (45%) 12 (30%) 10 (25%) 40 (100%)

Total 70 (47%) 50 (33%) 30 (20%) 150 (100%)

Scatter plots

When we wish to examine the relationship between two numerical variables, we

should start by drawing a scatter plot. This is a simple graph where each pair of

values is represented by a symbol whose horizontal position is determined by

the value of the first variable and vertical position is determined by the value of the

second variable. By convention, the outcome variable determines vertical position

and the exposure variable determines horizontal position.
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For example, Figure 3.9 shows data from a study of lung function among

636 children aged 7 to 10 years living in a deprived suburb of Lima, Peru. The

maximum volume of air which the children could breath out in 1 second (Forced

Expiratory Volume in 1 second, denoted as FEV1) was measured using a spiro-

meter. We are interested in how FEV1 changes with age, so that age is the

exposure variable (horizontal axis) and FEV1 is the outcome variable (vertical

axis). The plot gives the clear impression that FEV1 increases in an approximately

linear manner with age.

Scatter plots may also be used to display the relationship between a categorical

variable and a continuous variable. For example, in the study of lung function we

are also interested in the relationship between FEV1 and respiratory symptoms

experienced by the child over the previous 12 months. Figure 3.10 shows a scatter

plot that displays this relationship.

This figure is difficult to interpret, because many of the points overlap, particu-

larly in the group of children who did not report respiratory symptoms. One

solution to this is to scatter the points randomly along the horizontal axis, a

process known as ‘jittering’. This produces a clearer picture, as shown in Figure

3.11. We can now see that FEV1 tended to be higher in children who did not report

respiratory symptoms in the previous 12 months than in those who did.

An alternative way to display the relationship between a numerical variable and

a discrete variable is to draw box and whiskers plots, as described in Section 3.3.

Table 3.6 shows the data needed to do this for the two groups of children: those who

didandthosewhodidnotreportrespiratorysymptoms.Allthestatisticsdisplayedare

Fig. 3.9 Scatter plot showing the relationship between FEV1 and age in 636 children living in a deprived

suburb of Lima, Peru.
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Fig. 3.10 Scatter plot showing the relationship between FEV1 and respiratory symptoms in 636 children

living in a deprived suburb of Lima, Peru.

Fig. 3.11 Scatter plot showing the relationship between FEV1 and respiratory symptoms in 636 children

living in a deprived suburb of Lima, Peru. The position of the points on the horizontal axis was moved

randomly (‘jittered’) in order to separate them.
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Table 3.6 Median, interquartile range, and range of FEV1 measurements on 636 children living in a deprived

suburb of Lima, Peru, according to whether the child reported respiratory symptoms in the previous 12 months.

Respiratory symptoms

in the previous 12

months n

Lowest

FEV1
value

Lower

quartile

(25th centile) Median

Upper

quartile

(75th centile)

Highest

FEV1
value

No 491 0.81 1.44 1.61 1.82 2.69

Yes 145 0.64 1.28 1.46 1.65 2.39

Totals 636 0.64 1.40 1.58 1.79 2.69

lower in children who reported symptoms. This is reflected in Figure 3.12, where

all the points in the box and whiskers plot of FEV1 values for children who

reported respiratory symptoms are lower than the corresponding points in the

box and whiskers plot for children who did not report symptoms.

Fig. 3.12 Box and whiskers plots of the distribution of FEV1 in 636 children living in a deprived suburb of

Lima, Peru, according to whether they reported respiratory symptoms in the previous 12 months.

3.5 DISPLAYING TIME TRENDS

Graphs are also useful for displaying trends over time, such as the declines in child

mortality rates that have taken place in all regions of the world in the latter half of

the twentieth century, as shown in Figure 3.13. The graph also indicates the

enormous differentials between regions that still remain. Note that the graph

shows absolute changes in mortality rates over time. An alternative would be to
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Fig. 3.13 Trends in under-five mortality rates by region of the world.

plot the logarithms of the death rates (see Chapter 13). The slopes of the lines

would then show proportional declines, enabling rates of progress between regions

to be readily compared.

Breaks and discontinuities in the scale(s) should be clearly marked, and avoided

whenever possible. Figure 3.14(a) shows a common form of misrepresentation due

to an inappropriate use of scale. The decline in infant mortality rate (IMR) has

been made to look dramatic by expanding the vertical scale, while in reality the

decrease over the 10 years displayed is only slight (from 22.7 to 22.1 deaths/

1000 live births/year). A more realistic representation is shown in Figure 3.14(b),

with the vertical scale starting at zero.

Fig. 3.14 Decline in infant mortality rate (IMR) between 1970 and 1980. (a) Inappropriate choice of scale

has misleadingly exaggerated the decline. (b) Correct use of scale.
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PART B

ANALYSIS OF NUMERICAL
OUTCOMES

In this part of the book we describe methods for the analysis of studies where the

outcome variable is numerical. Examples of such variables include blood pressure,

antibody levels, birth weight and so on. We begin, in Chapter 4, by describing how

to summarize characteristics of the distribution of a numerical variable; having

defined the mean and standard deviation of a distribution, we introduce the

important concept of sampling error. Chapter 5 describes the normal distribution,

which occupies a central role in statistical analysis. We explain that the normal

distribution is important not only because it is a good empirical description of the

distribution of many variables, but also because the sampling distribution of a

mean is normal, even when the individual observations are not normally distrib-

uted. We build on this in the next three chapters, introducing the two fundamental

ways of reporting the results of a statistical analysis, confidence intervals (Chapters

6 and 7) and P-values (Chapters 7 and 8).

Chapter 6 deals with the analysis of a single variable. The remainder of this part

of the book deals with ways of analysing the relationship between a numerical

outcome (response) variable and one or more exposure (explanatory) variables.

We describe how to compare means between two exposure groups (Chapters 7 and

8), and extend these methods to comparison of means in several groups using

analysis of variance (Chapter 9) and the use of linear regression to examine the

association between numerical outcome and exposure variables (Chapter 10). All

these methods are shown to be special cases of multiple regression, which is

described in Chapter 11.

We conclude by describing how we can examine the assumptions underlying

these methods (Chapter 12), and the use of transformations of continuous vari-

ables to facilitate data analysis when these assumptions are violated (Chapter 13).
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CHAPTER 4

Means, standard deviations and
standard errors

4.1 Introduction Change of units

4.2 Mean, median and mode Coefficient of variation

4.3 Measures of variation 4.4 Calculating the mean and standard

Range and interquartile range deviation from a frequency

Variance distribution

Degrees of freedom 4.5 Sampling variation and

Standard deviation standard error

Interpretation of the standard Understanding standard deviations

deviation and standard errors

4.1 INTRODUCTION

A frequency distribution (see Section 3.2) gives a general picture of the distribu-

tion of a variable. It is often convenient, however, to summarize a numerical

variable still further by giving just two measurements, one indicating the average

value and the other the spread of the values.

4.2 MEAN, MEDIAN AND MODE

The average value is usually represented by the arithmetic mean, customarily just

called themean. This is simply the sumof the values divided by the number of values.

Mean, �xx¼ �x

n

where x denotes the values of the variable, � (the Greek capital letter sigma)

means ‘the sum of’ and n is the number of observations. The mean is denoted by �xx

(spoken ‘x bar’).

Othermeasures of the average value are themedian and themode. Themedianwas

defined in Section 3.3 as the value that divides the distribution in half. If the

observations are arranged in increasing order, themedian is themiddle observation.

Median ¼ (nþ 1)

2
th value of ordered observations



If there is an even number of observations, there is nomiddle one and the average of

the two ‘middle’ ones is taken. The mode is the value which occurs most often.

Example 4.1

The following are the plasma volumes of eight healthy adult males:

2:75, 2:86, 3:37, 2:76, 2:62, 3:49, 3:05, 3:12 litres

(a) n ¼ 8

�x ¼ 2:75þ 2:86þ 3:37þ 2:76þ 2:62þ 3:49þ 3:05þ 3:12 ¼ 24:02 litres

Mean, �xx¼ �x=n ¼ 24:02=8 ¼ 3:00 litres

(b) Rearranging the measurements in increasing order gives:

2:62, 2:75, 2:76, 2:86, 3:05, 3:12, 3:37, 3:49 litres

Median ¼ (nþ 1)=2 ¼ 9=2 ¼ 43th value

¼ average of 4th and 5th values

¼ (2:86þ 3:05)=2 ¼ 2:96 litres

(c) There is no estimate of the mode, since all the values are different.

The mean is usually the preferred measure since it takes into account each individ-

ual observation and is most amenable to statistical analysis. The median is a useful

descriptive measure if there are one or two extremely high or low values, which

would make the mean unrepresentative of the majority of the data. The mode is

seldom used. If the sample is small, either it may not be possible to estimate the

mode (as in Example 4.1c), or the estimate obtained may be misleading. The mean,

median and mode are, on average, equal when the distribution is symmetrical and

unimodal. When the distribution is positively skewed, a geometric mean may be

more appropriate than the arithmetic mean. This is discussed in Chapter 13.

4.3 MEASURES OF VARIATION

Range and interquartile range

Two measures of the amount of variation in a data set, the range and the

interquartile range, were introduced in Section 3.3. The range is the simplest

measure, and is the difference between the largest and smallest values. Its disad-

vantage is that it is based on only two of the observations and gives no idea of how

the other observations are arranged between these two. Also, it tends to be larger,

the larger the size of the sample. The interquartile range indicates the spread of the

middle 50% of the distribution, and together with the median is a useful adjunct to

the range. It is less sensitive to the size of the sample, providing that this is not too
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small; the lower and upper quartiles tend to be more stable than the extreme

values that determine the range. These two ranges form the basis of the box and

whiskers plot, described in Sections 3.3 and 3.4.

Range ¼ highest value� lowest value

Interquartile range ¼ upper quartile� lower quartile

Variance

For most statistical analyses the preferred measure of variation is the variance (or

the standard deviation, which is derived from the variance, see below). This uses all

the observations, and is defined in terms of the deviations (x��xx) of the observations
from the mean, since the variation is small if the observations are bunched closely

about their mean, and large if they are scattered over considerable distances. It is

not possible simply to average the deviations, as this average will always be zero;

the positive deviations corresponding to values above the mean will balance out

the negative deviations from values below the mean. An obvious way of overcom-

ing this difficulty would be simply to average the sizes of the deviations, ignoring

their sign. However, this measure is not mathematically very tractable, and so

instead we average the squares of the deviations, since the square of a number is

always positive.

Variance, s2 ¼ �(x� �xx)2

(n� 1)

Degrees of freedom

Note that the sum of squared deviations is divided by (n� 1) rather than n,

because it can be shown mathematically that this gives a better estimate of the

variance of the underlying population. The denominator (n� 1) is called the

number of degrees of freedom of the variance. This number is (n� 1) rather than

n, since only (n� 1) of the deviations (x� �xx) are independent from each other.

The last one can always be calculated from the others because all n of them must

add up to zero.

Standard deviation

A disadvantage of the variance is that it is measured in the square of the units used

for the observations. For example, if the observations are weights in grams, the
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variance is in grams squared. For many purposes it is more convenient to express

the variation in the original units by taking the square root of the variance. This is

called the standard deviation (s.d.).

s:d:, s ¼ �(x� �xx)2

(n� 1)

s

or equivalently

s ¼ �x2 � (�x)2=n

(n� 1)

s

When using a calculator, the second formula is more convenient for calculation,

since the mean does not have to be calculated first and then subtracted from each

of the observations. The equivalence of the two formulae is demonstrated in

Example 4.2. (Note: Many calculators have built-in functions for the mean and

standard deviation. The keys are commonly labelled �xxand �n�1, respectively,

where � is the lower case Greek letter sigma.)

Example 4.2

Table 4.1 shows the steps for the calculation of the standard deviation of the eight

plasma volume measurements of Example 4.1.

�x2 � (�x)2=n ¼ 72:7980� (24:02)2=8 ¼ 0:6780

gives the same answer as �(x� �xx)2, and

s ¼ (
p

0:6780=7) ¼ 0:31 litres

Table 4.1 Calculation of the standard deviation of the plasma volumes (in litres) of eight healthy adult males

(same data as in Example 4.1). Mean, �xx¼ 3:00 litres.

Plasma volume

x

Deviation from the mean

x � �xx

Squared deviation

(x � �xx)2
Squared observation

x2

2.75 �0.25 0.0625 7.5625

2.86 �0.14 0.0196 8.1796

3.37 0.37 0.1369 11.3569

2.76 �0.24 0.0576 7.6176

2.62 �0.38 0.1444 6.8644

3.49 0.49 0.2401 12.1801

3.05 0.05 0.0025 9.3025

3.12 0.12 0.0144 9.7344

Totals 24.02 0.00 0.6780 72.7980
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Interpretation of the standard deviation

Usually about 70% of the observations lie within one standard deviation of their

mean, and about 95% lie within two standard deviations. These figures are based

on a theoretical frequency distribution, called the normal distribution, which is

described in Chapter 5. They may be used to derive reference ranges for the

distribution of values in the population (see Chapter 5).

Change of units

Adding or subtracting a constant from the observations alters themean by the same

amount but leaves the standard deviation unaffected. Multiplying or dividing by a

constant changes both the mean and the standard deviation in the same way.

For example, suppose a set of temperatures is converted from Fahrenheit to

centigrade. This is done by subtracting 32, multiplying by 5, and dividing by 9.

The new mean may be calculated from the old one in exactly the same way, that is

by subtracting 32, multiplying by 5, and dividing by 9. The new standard devi-

ation, however, is simply the old one multiplied by 5 and divided by 9, since the

subtraction does not affect it.

Coefficient of variation

cv ¼ s

�xx
� 100%

The coefficient of variation expresses the standard deviation as a percentage of the

sample mean. This is useful when interest is in the size of the variation relative to

the size of the observation, and it has the advantage that the coefficient of

variation is independent of the units of observation. For example, the value

of the standard deviation of a set of weights will be different depending on

whether they are measured in kilograms or pounds. The coefficient of variation,

however, will be the same in both cases as it does not depend on the unit of

measurement.

4.4 CALCULATING THE MEAN AND STANDARD DEVIATION FROM A

FREQUENCY DISTRIBUTION

Table 4.2 shows the distribution of the number of previous pregnancies of a group

of women attending an antenatal clinic. Eighteen of the 100 women had

no previous pregnancies, 27 had one, 31 had two, 19 had three, and five had

four previous pregnancies. As, for example, adding 2 thirty-one times is
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Table 4.2 Distribution of the number of previous pregnancies of a group of women

aged 30–34 attending an antenatal clinic.

No. of previous pregnancies

0 1 2 3 4 Total

No. of women 18 27 31 19 5 100

equivalent to adding the product (2� 31), the total number of previous pregnan-

cies is calculated by:

�x ¼ (0� 18)þ (1� 27)þ (2� 31)þ (3� 19)þ (4� 5)

¼ 0þ 27þ 62þ 57þ 20 ¼ 166

The average number of previous pregnancies is, therefore:

�xx¼ 166=100 ¼ 1:66

In the same way:

�x2 ¼ (02 � 18)þ (12 � 27)þ (22 � 31)þ (32 � 19)þ (42 � 5)

¼ 0þ 27þ 124þ 171þ 80 ¼ 402

The standard deviation is, therefore:

s ¼ (402� 1662=100)

99

r
¼ 126:44

99

r
¼ 1:13

If a variable has been grouped when constructing a frequency distribution, its

mean and standard deviation should be calculated using the original values, not

the frequency distribution. There are occasions, however, when only the frequency

distribution is available. In such a case, approximate values for the mean and

standard deviation can be calculated by using the values of the mid-points of the

groups and proceeding as above.

4.5 SAMPLING VARIATION AND STANDARD ERROR

As discussed in Chapter 2, the sample is of interest not in its own right, but for

what it tells the investigator about the population which it represents. The sample

mean, �xx, and standard deviation, s, are used to estimate the mean and standard

deviation of the population, denoted by the Greek letters � (mu) and � (sigma)

respectively.

The sample mean is unlikely to be exactly equal to the population mean. A

different sample would give a different estimate, the difference being due to
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sampling variation. Imagine collecting many independent samples of the same size

from the same population, and calculating the sample mean of each of them. A

frequency distribution of these means (called the sampling distribution) could then

be formed. It can be shown that:

1 the mean of this frequency distribution would be the population mean, and

2 the standard deviation would equal �= n
p

. This is called the standard error of

the sample mean, and it measures how precisely the population mean is

estimated by the sample mean. The size of the standard error depends

both on how much variation there is in the population and on the size of the

sample. The larger the sample size n, the smaller is the standard error.

We seldom know the population standard deviation, �, however, and so

we use the sample standard deviation, s, in its place to estimate the standard

error.

s:e: ¼ s

n
p

Example 4.3

The mean of the eight plasma volumes shown in Table 4.1 is 3.00 litres (Example

4.1) and the standard deviation is 0.31 litres (Example 4.2). The standard error of

the mean is therefore estimated as:

s= n
p ¼ 0:31= 8

p ¼ 0:11 litres

Understanding standard deviations and standard errors

Example 4.4

Figure 4.1 shows the results of a game played with a class of 30 students to

illustrate the concepts of sampling variation, the sampling distribution, and stand-

ard error. Blood pressure measurements for 250 airline pilots were used, and

served as the population in the game. The distribution of these measurements is

shown in Figure 4.1(a). The population mean, �, was 78.2mmHg, and the popu-

lation standard deviation, �, was 9.4mmHg. Each value was written on a small

disc and the 250 discs put into a bag.

Each student was asked to shake the bag, select ten discs, write down the ten

diastolic blood pressures, work out their mean, �xx, and return the discs to the bag.

In this way 30 different samples were obtained, with 30 different sample means,

each estimating the same population mean. The mean of these sample means was

78.23mmHg, close to the population mean. Their distribution is shown in Figure

4.1(b). The standard deviation of the sample means was 3.01mmHg, which agreed

well with the theoretical value, �= n
p ¼ 9:4= 10

p ¼ 2:97mmHg, for the standard

error of the mean of a sample of size ten.
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Fig. 4.1 Results of a game played to illustrate the concepts of sampling variation, the sampling distribution,

and the standard error.

The exercise was repeated taking samples of size 20. The results are shown

in Figure 4.1(c). The reduced variation in the sample means resulting from increas-

ing the sample size from 10 to 20 can be clearly seen. The mean of the sample means

was 78.14mmHg, again close to the population mean. The standard deviation was

2.07mmHg, again in good agreement with the theoretical value, 9:4= 20
p ¼

2:10 mmHg, for the standard error of the mean of a sample of size 20.
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In this game, we had the luxury of results from several different samples, and

could draw the sampling distribution. Usually we are not in this position: we have

just one sample that we wish to use to estimate the mean of a larger population,

which it represents. We can draw the frequency distribution of the values in our

sample (see, for example, Figure 3.3 of the histogram of haemoglobin levels of 70

women). Providing the sample size is not too small, this frequency distribution will

be similar in appearance to the frequency distribution of the underlying popula-

tion, with a similar spread of values. In particular, the sample standard deviation

will be a fairly accurate estimate of the population standard deviation. As stated in

Section 4.2, approximately, 95% of the sample values will lie within two standard

deviations of the sample mean. Similarly, approximately 95% of all the values in

the population will lie within this same amount of the population mean.

The sample mean will not be exactly equal to the population mean. The

theoretical distribution called the sampling distribution gives us the spread of

values we would get if we took a large number of additional samples; this spread

depends on the amount of variation in the underlying population and on our

sample size. The standard deviation of the sampling distribution is called the

standard error and is equal to the standard deviation of the population, divided

by the square root of n. This means that approximately 95% of the values in this

theoretical sampling distribution of sample means lie within two standard errors

of the population mean. This fact can be used to construct a range of likely values

for the (unknown) population mean, based on the observed sample mean and its

standard error. Such a range is called a confidence interval. Its method of con-

struction is not described until Chapter 6 since it depends on using the normal

distribution, described in Chapter 5. In summary:

� The standard deviation measures the amount of variability in the population.

� The standard error (¼ standard deviation / n
p

) measures the amount of vari-

ability in the sample mean; it indicates how closely the population mean is

likely to be estimated by the sample mean.

� Because standard deviations and standard errors are often confused it is very

important that they are clearly labelled when presented in tables of results.
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CHAPTER 5

The normal distribution

5.1 Introduction Area in lower tail of distribution

5.2 Why the normal distribution Area of distribution between two values

is important Value corresponding to specified tail area

5.3 The equation of the normal curve 5.6 Percentage points of the normal

5.4 The standard normal distribution distribution, and reference ranges

5.5 Area under the curve of the 5.7 Using z-scores to compare data with

normal distribution reference curves

Area in upper tail of distribution

5.1 INTRODUCTION

Frequency distributions and their various shapes were discussed in Chapter 3. In

practice it is found that a reasonable description of many variables is provided by

the normal distribution, sometimes called the Gaussian distribution after its discov-

erer, Gauss. Its frequency distribution (defined by the normal curve) is symmetrical

about the mean and bell-shaped; the bell is tall and narrow for small standard

deviations and short and wide for large ones. Figure 5.1 illustrates the normal

curve describing the distribution of heights of adult men in the United Kingdom.

Other examples of variables that are approximately normally distributed are

blood pressure, body temperature, and haemoglobin level. Examples of variables

that are not normally distributed are triceps skinfold thickness and income, both

of which are positively skewed. Sometimes transforming a variable, for example by

Fig. 5.1 Diagram showing the approximate normal curve describing the distribution of heights of adult men.



taking logarithms, will make its distribution more normal. This is described in

Chapter 13, and methods to assess whether a variable is normally distributed are

discussed in Chapter 12.

5.2 WHY THE NORMAL DISTRIBUTION IS IMPORTANT

The normal distribution is important not only because it is a good empirical

description of the distribution of many variables, but because it occupies a central

role in statistical analysis. This is because it can be shown that the sampling

distribution of a mean is normal, even when the individual observations are not

normally distributed, provided that the sample size is not too small. In other

words, sample means will be normally distributed around the true population

mean. A practical demonstration of this property can easily be had by carrying out

a sampling game like Example 4.4, but with the 250 blood pressures replaced by a

non-normally distributed variable, such as triceps skinfold thickness. The larger

the sample selected in the game, the closer the sample mean will be to being

normally distributed. The number needed to give a close approximation to nor-

mality depends on how non-normal the variable is, but in most circumstances a

sample size of 15 or more is enough.

This finding is based on a remarkable and very useful result known as the

central limit theorem. It means that calculations based on the normal distribution

are used to derive confidence intervals, which were mentioned in Chapter 4, are

defined fully in Chapter 6 and used throughout subsequent chapters. The normal

distribution also underlies the calculation of P-values, which are used to test

hypotheses and which are introduced in Chapter 7. The normal distribution is

not only important in the analysis of numerical outcomes; we will see in parts C

and D that statistical methods for proportions and rates are also based on

approximations to the normal distribution.

For these reasons it is important to describe the principles of how to use the

normal distribution in some detail before proceeding further. The precise math-

ematical equation which defines the normal distribution is included in the next

section for reference only; this section can be skipped by the majority of readers.

In practical terms, calculations are carried out either by a statistical package, or by

using standard tables.

5.3 THE EQUATION OF THE NORMAL CURVE

The value of the normal curve with mean � and standard deviation � is:

y ¼ 1

2��2
p exp

�(x� �)2

2�2

 !
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where y gives the height of the curve, x is any value on the horizontal axis, exp( )

is the exponential function (see Section 13.2 for an explanation of the exponential

function) and � ¼ 3:14159. The normal curve value y is expressed as a proportion

and the total area under the curve sums to 1, corresponding to the whole

population.

The vertical axis can be expressed as a percentage, as in Figure 5.1, by multi-

plying y by 100. The area under the curve then sums to 100%.

Example 5.1

The following give two examples of calculating the height of the curve in Figure

5.1, where � ¼ 171:5 and � ¼ 6:5 cm.

1 When height x ¼ 171:5 cm (the mean value) then (x� m) ¼ 0. This means that

the expression inside the bracket is zero. As exp(0)¼ 1, the height of the curve is

given by

y ¼ 1

2�� 6:52
p ¼ 0:0614, or 6:14%

2 When height x ¼ 180 cm, the exponential part of the equation is

exp � (180� 171:5)2

2� 6:52

 !
¼ 0:4253

and the height of the curve is given by

y ¼ 0:4253

2�� 6:52
p ¼ 0:0261, or 2:61%

These values are indicated by the horizontal dashed lines on the normal curve in

Figure 5.1.

5.4 THE STANDARD NORMAL DISTRIBUTION

If a variable is normally distributed then a change of units does not affect this.

Thus, for example, whether height is measured in centimetres or inches it is

normally distributed. Changing the mean simply moves the curve along the

horizontal axis, while changing the standard deviation alters the height and

width of the curve.

In particular, by a suitable change of units any normally distributed variable

can be related to the standard normal distribution whose mean is zero and whose

standard deviation is 1. This is done by subtracting the mean from each observa-

tion and dividing by the standard deviation. The relationship is:

44 Chapter 5: The normal distribution



Fig. 5.2 Relationship between normal distribution in original units of measurement and in standard normal

deviates. SND ¼ (height� 171:5)=6:5: Height ¼ 171:5þ (6:5� SND).

SND, z ¼ x� �

�

where x is the original variable with mean � and standard deviation �, and z is the

corresponding standard normal deviate (SND), alternatively called the z-score.

This is illustrated for the distribution of adult male heights in Figure 5.2. The

equation of the standard normal distribution is:

y ¼ exp(� z2=2)

2�
p

The possibility of converting any normally distributed variable into an SNDmeans

that calculations based on the standard normal distribution may be converted to

corresponding calculations for any values of the mean and standard deviation.

These calculations may be done either by using a computer, or by consulting tables

of probability values for the normal distribution. The two most commonly pro-

vided sets of tables are (i) the area under the frequency distribution curve, and (ii)

the so-called percentage points.

5.5 AREA UNDER THE CURVE OF THE NORMAL DISTRIBUTION

The standard normal distribution can be used to determine the proportion of the

population that has values in some specified range or, equivalently, the probability

that an individual observation from the distribution will lie in the specified range.
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This is done by calculating the area under the curve. Calculation of areas under the

normal curve requires a computer. It can be shown that the area under the whole

of the normal curve is exactly 1; in other words the probability that an observation

lies somewhere in the whole of the range is 1, or 100%.

Calculation of the proportion of the population in different ranges will be

illustrated for the distribution shown in Figure 5.1 of the heights of adult men in

the United Kingdom, which is approximately normal with mean � ¼ 171:5 cm and

standard deviation � ¼ 6:5 cm.

Area in upper tail of distribution

The proportion of men who are taller than 180 cm may be derived from the

proportion of the area under the normal frequency distribution curve that is

above 180 cm. The corresponding SND is:

z ¼ 180� 171:5

6:5
¼ 1:31

so that the proportion may be derived from the proportion of the area of the

standard normal distribution that is above 1.31. This area is illustrated in Figure

5.3(a) and can be found from a computer or from Table A1 in the Appendix. The

rows of the table refer to z to one decimal place and the columns to the second

decimal place. Thus the area above 1.31 is given in row 1.3 and column 0.01 and is

0.0951. We conclude that a fraction 0.0951, or equivalently 9.51%, of adult men

are taller than 180 cm.

Area in lower tail of distribution

The proportion ofmen shorter than 160 cm, for example, can be similarly estimated:

z ¼ 160� 171:5

6:5
¼ �1:77

The required area is illustrated in Figure 5.3(b). As the standard normal distribu-

tion is symmetrical about zero the area below z ¼ �1:77 is equal to

Fig. 5.3 Examples of the calculation of areas of the standard normal distribution.
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the area above z ¼ 1:77 and is 0.0384. Thus 3.84% of men are shorter than

160 cm.

Area of distribution between two values

The proportion of men with a height between, for example, 165 cm and 175 cm is

estimated by finding the proportions of men shorter than 165 cm and taller than

175 cm and subtracting these from 1. This is illustrated in Figure 5.3(c).

1 SND corresponding to 165 cm is:

z ¼ 165� 171:5

6:5
¼ �1

Proportion below this height is 0.1587.

2 SND corresponding to 175 cm is:

z ¼ 175� 171:5

6:5
¼ 0:54

Proportion above this height is 0.2946.

3 Proportion of men with heights between 165 cm and 175 cm

¼ 1� proportion below 165 cm� proportion above 175 cm

¼ 1� 0:1587� 0:2946 ¼ 0:5467 or 54:67%

Value corresponding to specified tail area

Table A1 can also be used the other way round, that is starting with an area and

finding the corresponding z value. For example, what height is exceeded by 5% or

0.05 of the population? Looking through the table the closest value to 0.05 is

found in row 1.6 and column 0.04 and so the required z value is 1.64. The

corresponding height is found by inverting the definition of SND to give:

x ¼ �þ z�

and is 171:5þ 1:64� 6:5 ¼ 182:2 cm.

5.6 PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION, AND

REFERENCE RANGES

The SND expresses the value of a variable in terms of the number of standard

deviations it is away from the mean. This is shown on the scale of the original

variable in Figure 5.4. Thus, for example, z ¼ 1 corresponds to a value which is
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one standard deviation above the mean and z ¼ �1 to one standard deviation

below the mean. The areas above z ¼ 1 and below z ¼ �1 are both 0.1587 or

15.87%. Therefore 31.74% (2� 15:87%) of the distribution is further than one

standard deviation from the mean, or equivalently 68.26% of the distribution lies

within one standard deviation of the mean. Similarly, 4.55% of the distribution is

further than two standard deviations from the mean, or equivalently 95.45% of

the distribution lies within two standard deviations of the mean. This is the

justification for the practical interpretation of the standard deviation given in

Section 4.3.

Exactly 95% of the distribution lies between �1:96 and 1.96 (Fig 5.5a). There-

fore the z value 1.96 is said to be the 5% percentage point of the normal distribu-

tion, as 5% of the distribution is further than 1.96 standard deviations from the

mean (2.5% in each tail). Similarly, 2.58 is the 1% percentage point. The com-

monly used percentage points are tabulated in Table A2. Note that they could also

be found from Table A1 in the way described above.

The percentage points described here are known as two-sided percentage points,

as they cover extreme observations in both the upper and lower tails of the

distribution. Some tables give one-sided percentage points, referring to just one

tail of the distribution. The one-sided a% point is the same as the two-sided 2a%

Fig. 5.4 Interpretation of SND in terms of a scale showing the number of standard deviations from the

mean.

Fig. 5.5 Percentage points of the normal distribution.
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point (Figure 5.5b). For example, 1.96 is the one-sided 2.5% point, as 2.5% of the

standard normal distribution is above 1.96 (or equivalently 2.5% is below �1:96)

and it is the two-sided 5% point. This difference is discussed again in Section 7.3 in

the context of hypothesis tests.

These properties mean that, for a normally distributed population, we can

derive the range of values within which a given proportion of the population

will lie. The 95% reference range is given by the mean�1:96 s.d. to mean

þ 1:96 s.d., since 95% of the values in a population lie in this range. We can also

define the 90% reference range and the 99% reference range in the same way, as

mean�1:64 s.d. to meanþ1:64 s.d. and mean�2:58 s.d. to meanþ2:58 s.d., re-

spectively.

5.7 USING Z -SCORES TO COMPARE DATA WITH REFERENCE CURVES

SNDs and z-scores are also used as a way of comparing the values of a variable

with those of reference curves. The analysis is then carried out using the z-scores

rather than the original values. For example, this is commonly carried out for

anthropometric data, where growth charts are used to assess where an individual’s

weight (or height) lies compared to standard values for their age and sex, and the

analysis is in terms of weight-for-age, height-for-age or weight-for-height z-scores.

This use of z-scores is described in Section 13.4, in the chapter on transformations.
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CHAPTER 6

Confidence interval for a mean

6.1 Introduction Confidence interval using t

6.2 Large sample case distribution

(normal distribution) Severe non-normality

6.3 Interpretation of confidence 6.5 Summary of alternatives

intervals 6.6 Confidence intervals and

6.4 Smaller samples reference ranges

6.1 INTRODUCTION

In Chapter 4 we explained the idea of sampling variation and the sampling distribu-

tion of the mean. We showed that the mean of this sampling distribution equals the

population mean, �, and its standard deviation equals �= n
p

, where � is the

population standard deviation, and n is the sample size. We introduced the concept

that this standard deviation, which is called the standard error of the sample mean,

measures how precisely the population mean is estimated by the sample mean. We

now describe how we can use the sample mean and its standard error to give us a

range of likely values for the population mean, which we wish to estimate.

6.2 LARGE SAMPLE CASE (NORMAL DISTRIBUTION)

In Chapter 4, we stated that approximately 95% of the sample means in the

distribution obtained by repeated sampling would lie within two standard errors

above or below the population mean. By drawing on the finding presented in

Chapter 5, that provided that the sample size is not too small, this sampling

distribution is a normal distribution, whether or not the underlying population

distribution is normal, we can now be more precise. We can state that 95% of

the sample means would lie within 1.96 standard errors above or below the

population mean, since 1.96 is the two-sided 5% point of the standard normal

distribution. This means that there is a 95% probability that a particular sample

mean (�xx) lies within 1.96 standard errors above or below the population mean (�),

which we wish to estimate:

Prob(�xxis in the range �� 1:96� s:e: to �þ 1:96� s:e:) ¼ 95%

In practice, this result is used to estimate from the observed sample mean (�xx) and

its standard error (s.e.) a range within which the population mean is likely to lie.

The statement:



‘�xxis in the range �� 1:96� s:e: to �þ 1:96� s:e:’

is equivalent to the statement:

‘� is in the range �xx� 1:96� s:e: to �xxþ 1:96� s:e:’

Therefore there is a 95% probability that the interval between �xx� 1:96� s:e. and

�xxþ 1:96� s:e: contains the (unknown) population mean. This interval is called a

95% confidence interval (CI) for the population mean, and �xx� 1:96� s:e: and

�xxþ 1:96� s:e: are called upper and lower 95% confidence limits for the population

mean, respectively.

When the sample is large, say n greater than 60, not only is the sampling

distribution of sample means well approximated by the normal distribution, but

the sample standard deviation, s, is a reliable estimate of the population standard

deviation, �, which is usually also not known. The standard error of the sample

mean, �= n
p

, can therefore be estimated by s= n
p

.

Large-sample 95% CI ¼ �xx� (1:96� s= n
p

) to �xxþ (1:96� s= n
p

)

Confidence intervals for percentages other than 95% are calculated in the same

way using the appropriate percentage point, z0, of the standard normal distribu-

tion in place of 1.96 (see Chapter 5). For example:

Large-sample 90% CI ¼ �xx� (1:64� s= n
p

) to �xxþ (1:64� s= n
p

)

Large-sample 99% CI ¼ �xx� (2:58� s= n
p

) to �xxþ (2:58� s= n
p

)

Example 6.1

As part of a malaria control programme it was planned to spray all the 10 000

houses in a rural area with insecticide and it was necessary to estimate the amount

that would be required. Since it was not feasible to measure all 10 000 houses, a

random sample of 100 houses was chosen and the sprayable surface of each of

these was measured.

The mean sprayable surface area for these 100 houses was 24:2 m2 and the

standard deviation was 5:9 m2. It is unlikely that the mean surface area of this

sample of 100 houses (�xx) exactly equals the mean surface area of all 10 000 houses

(�). Its precision is measured by the standard error �= n
p

, estimated by s= n
p ¼

5:9= 1
p

00 ¼ 0:6 m2. There is a 95% probability that the sample mean of 24:2 m2

differs from the population mean by less than 1:96 s:e: ¼ 1:96� 0:6 ¼ 1:2 m2. The

95% confidence interval is:
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95% CI ¼ �xx� 1:96� s:e: to �xxþ 1:96� s:e:

¼ 24:2� 1:2 to 24:2þ 1:2 ¼ 23:0 to 25:4 m2

It was decided to use the upper 95% confidence limit in budgeting for the

amount of insecticide required as it was preferable to overestimate rather than

underestimate the amount. One litre of insecticide is sufficient to spray 50m2 and

so the amount budgeted for was:

10 000� 25:4=50 ¼ 5080 litres

There is still a possibility, however, that this is too little insecticide. The interval

23:0 to 25:4 m2 gives the likely range of values for the mean surface area of all

10 000 houses. There is a 95% probability that this interval contains the popula-

tion mean but a 5% probability that it does not, with a 2.5% probability

(0:5� 5%) that the estimate based on the upper confidence limit is too small. A

more cautious estimate for the amount of insecticide required would be based on a

wider confidence interval, such as 99%, giving a smaller probability (0.5%) that

too little would be estimated.

6.3 INTERPRETATION OF CONFIDENCE INTERVALS

We stated in Chapter 2 that our aim in many statistical analyses is to use the

sample to make inferences about the population from which it was drawn. Confi-

dence intervals provide us with a means of doing this (see Fig. 6.1).

It is tempting to interpret a 95% CI by saying that ‘there is a 95% probability

that the population mean lies within the CI’. Formally, this is not quite correct

because the population mean (�) is a fixed unknown number: it is the confidence

Fig. 6.1 Use of confidence intervals to make inferences about the population from which the sample was

drawn.
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Fig. 6.2 Mean sprayable areas, with 95% confidence intervals, from 20 samples of 100 houses in a rural

area. The star indicates that the CI does not contain the population mean.

interval that will vary between samples. In other words, if we were to draw several

independent, random samples from the same population and calculate 95% confi-

dence intervals from each of them, then on average 19 of every 20 (95%) such

confidence intervals would contain the true population mean, and one of every 20

(5%) would not.

Example 6.2

A further 19 samples, each of 100 houses, were taken from the 10 000

houses described in Example 6.1. The mean sprayable surface and its standard

error were calculated from each sample, and these were used to derive 95%

confidence intervals. The means and 95% CIs from all 20 samples are shown in

Figure 6.2. The mean in the whole population (� ¼ 24:2m2) is shown by a

horizontal dashed line. The sample means vary around the population mean �,

and one of the twenty 95% confidence intervals (indicated by a star) does not

contain �.

6.4 SMALLER SAMPLES

In the calculation of confidence intervals so far described the sample size (n) has

been assumed to be large (greater than 60). When the sample size is not large, two

aspects may alter:

1 the sample standard deviation, s, which is itself subject to sampling variation,

may not be a reliable estimate for �;
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2 when the distribution in the population is not normal, the distribution of the

sample mean may also be non-normal.

The second of these effects is of practical importance only when the sample size is

very small (less than, say, 15) and when the distribution in the population is

extremely non-normal. Because of the central limit theorem (see Chapter 5), it is

usually only the first point, the sampling variation in s, which invalidates the use

of the normal distribution in the calculation of confidence intervals. Instead, a

distribution called the t distribution is used. Strictly speaking, this is valid only if

the population is normally distributed, but the use of the t distribution has been

shown to be justified, except where the population is extremely non-normal. (This

property is called robustness.) What to do in cases of severe non-normality is

described later in this chapter.

Confidence interval using t distribution

The earlier calculation of a confidence interval using the normal distribution was

based on the fact that (�xx� �)=(�= n
p

) is a value from the standard normal

distribution, and that for large samples we could use s in place of �. In fact,

(�xx� �)=(s= n
p

) is a value not from the standard normal distribution but from a

distribution called the t distribution with (n� 1) degrees of freedom. This distribu-

tion was introduced by W. S. Gossett, who used the pen-name ‘Student’, and is

often called Student’s t distribution. Like the normal distribution, the t distribu-

tion is a symmetrical bell-shaped distribution, but it is more spread out, having

longer tails (Figure 6.3).

The exact shape of the t distribution depends on the degrees of freedom (d.f.),

n� 1, of the sample standard deviation s; the fewer the degrees of freedom, the

more the t distribution is spread out. The percentage points are tabulated for

various degrees of freedom in Table A3 in the Appendix. For example, if

the sample size is 8, the degrees of freedom are 7 and the two-sided 5% point is

2.36. In this case the 95% confidence interval using the sample standard deviation

s would be

95% CI ¼ x� 2:36 s= n
p

to xþ 2:36 s= n
p

Fig. 6.3 t distribution with 5 degrees of freedom compared to the normal distribution.
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In general a confidence interval is calculated using t0, the appropriate percentage
point of the t distribution with (n� 1) degrees of freedom.

Small-sample CI ¼ �xx� (t0 � s= n
p

) to �xxþ (t0 � s= n
p

)

For small degrees of freedom the percentage points of the t distribution are

appreciably larger in value than the corresponding percentage points of the normal

distribution. This is because the sample standard deviation s may be a poor

estimate of the population value �, and when this uncertainty is taken into account

the resulting confidence interval is considerably wider than if � were reliably

known. For large degrees of freedom the t distribution is almost the same as the

standard normal distribution, since s is a good estimate of �. The bottom row of

Table A3 in the Appendix gives the percentage points for the t distribution with an

infinite number (1) of degrees of freedom and it may be seen by comparison with

Table A2 that these are the same as for the normal distribution.

Example 6.3

The following are the numbers of hours of relief obtained by six arthritic patients

after receiving a new drug:

2:2, 2:4, 4:9, 2:5, 3:7, 4:3 hours

�xx¼ 3:3 hours, s ¼ 1:13 hours, n ¼ 6, d:f : ¼ n� 1 ¼ 5

s= n
p ¼ 0:46 hours

The 5% point of the t distribution with 5 degrees of freedom is 2.57, and so the

95% confidence interval for the average number of hours of relief for arthritic

patients in general is:

3:3� 2:57� 0:46 to 3:3þ 2:57� 0:46 ¼ 3:3� 1:2 to 3:3þ 1:2 ¼ 2:1 to 4:5 hours

Severe non-normality

When the distribution in the population is markedly non-normal (see Section

12.2), it may be desirable to transform the scale on which the variable x is

measured so as to make its distribution on the new scale more normal (see Chapter

13). An alternative is to calculate a non-parametric confidence interval or to use

bootstrap methods (see Chapter 30).

6.5 SUMMARY OF ALTERNATIVES

Table 6.1 summarizes which procedure should be used in constructing a confi-

dence interval. There is no precise boundary between approximate normality and

non-normality but, for example, a reverse J-shaped distribution (Fig. 3.6b) is
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Table 6.1 Recommended procedures for constructing a confidence interval. (z0 is the percentage point from the

normal distribution, and t0 the percentage point from the t distribution with (n� 1) degrees of freedom.)

(a) Population standard deviation s unknown.

Population distribution

Sample size Approximately normal Severely non-normal*

60 or more �xx� (z0 � s= n
p

) to �xxþ (z0 � s= n
p

) �xx� (z0 � s= n
p

) to �xxþ (z0 � s= n
p

)

Less than 60 �xx� (t0 � s= n
p

) to �xxþ (t0 � s= n
p

) see Chapter 30

(b) Population standard deviation s known.

Population distribution

Sample size Approximately normal Severely non-normal*

15 or more �xx� (z0 � �= n
p

) to �xxþ (z0 � �= n
p

) �xx� (z0 � �= n
p

) to �xxþ (z0 � �= n
p

)

Less than 15 �xx� (z0 � �= n
p

) to �xxþ (z0 � �= n
p

) see Chapter 30

*It may be preferable to transform the scale of measurement to make the distribution more normal (see

Chapter 13).

severely non-normal, and a skewed distribution (Fig. 3.5b or c) is moderately non-

normal.

In rare instances the population standard deviation, �, is known and therefore

not estimated from the sample. When this occurs the standard normal distribution

percentage points are used to give the confidence interval regardless of sample size,

provided the population distribution is not severely non-normal (in which case see

the preceding paragraph).

6.6 CONFIDENCE INTERVALS AND REFERENCE RANGES

It is important to understand the distinction between the reference range (which

was defined in Section 5.6) and confidence intervals, defined in this chapter.

Although they are often confused, each has a different use and a different defini-

tion.

A 95% reference range is given by:

95% reference range ¼ m� 1:96� s:d: to mþ 1:96� s:d:

where m is the mean of the distribution and s.d. is its standard deviation. A large

sample 95% confidence interval is given by:

95% CI ¼ �xx� 1:96� s:e: to �xxþ 1:96� s:e:

where s.e. is the standard error of the distribution: s:e: ¼ s:d:= n
p

.

The reference range tells us about the variability between individual observa-

tions in the population: providing that the distribution is approximately normal
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95% of individual observations will lie within the reference range. In contrast, as

explained earlier in this chapter, the 95% CI tells us a range of plausible values for

the population mean, given the sample mean. Since the sample size n must be > 1,

the confidence interval will always be narrower than the reference range.

6.6 Confidence intervals and reference ranges 57



CHAPTER 7

Comparison of two means: confidence
intervals, hypothesis tests and P-values

7.1 Introduction Confidence interval

7.2 Sampling distribution of the t test

difference between two means 7.5 Small samples, unequal standard

7.3 Methods based on the normal deviations

distribution (large samples 7.6 Paired measurements

or known standard deviations) Confidence interval

Confidence interval Hypothesis test

z-test

7.4 Methods based on the

t distribution (small samples,

equal standard deviations)

7.1 INTRODUCTION

InChapter 6we described how to use a samplemean and its standard error to give us

a range of likely values, called a confidence interval, for the corresponding popula-

tion mean. We now extend these ideas to situations where we wish to compare the

mean outcomes in two exposure (or treatment) groups. We will label the two groups

0 and 1, and the twomeans �xx0 and �xx1, with group 1 denoting individuals exposed to a

risk factor, and group 0 denoting those unexposed. In clinical trials, group 1 will

denote the treatment group and group 0 the control group. For example:

� In a study of the determinants of birthweight, we may wish to compare the

mean birthweight of children born to smokers (the exposed group, 1) with that

for children born to non-smokers (the unexposed group, 0).

� In a clinical trial of a new anti-hypertensive drug, the comparison of interest

might be mean systolic blood pressure after 6months of treatment, between

patients allocated to receive the new drug (the treatment group, 1) and those

allocated to receive standard therapy (the control group, 0).

The two group means, �xx1 and �xx0, are of interest not in their own right, but for

what they tell us more generally about the effect of the exposure on the outcome of

interest (or in the case of a clinical trial, of the treatment), in the population from

which the groups are drawn. More specifically, we wish to answer the following

related questions.

1 What does the difference between the two group means in our sample (�xx1 and

�xx0) tell us about the difference between the two group means in the population?

In other words, what can we say about how much better (or worse) off are

exposed individuals compared to unexposed? This is addressed by calculating a



confidence interval for the range of likely values for the difference, following a

similar approach to that used for a single mean (see Chapter 6).

2 Do the data provide evidence that the exposure actually affects the outcome, or

might the observed difference between the sample means have arisen by chance?

In other words, are the data consistent with there being zero difference between

the means in the two groups in the population? We address this by carrying out

a hypothesis (or significance) test to give a P-value, which is the probability of

recording a difference between the two groups at least as large as that in our

sample, if there was no effect of the exposure in the population.

In this chapter we define the sampling distribution of the difference in means

comparing the two groups, and then describe how to use this to calculate a

confidence interval for the true difference, and how to calculate the test

statistic and P-value for the related hypothesis test. The methods used are based

on either the normal or t distributions. The rules for which distribution to use are

similar to those for the one-sample case. For large samples, or known standard

deviations, we use the normal distribution, and for small samples we use the

t distribution.

The majority of this chapter is concerned with comparing mean outcomes

measured in two separate groups of individuals. In some circumstances, however,

our data consist instead of pairs of outcome measurements. How to compare

paired measurements is covered in Section 7.6. For example:

� We might wish to carry out a study where the assessment of an anti-

hypertensive drug is based on comparing blood pressure measurements in a

group of hypertensive men, before and after they received treatment. For each

man, we therefore have a pair of outcome measures, blood pressure after

treatment and blood pressure before treatment. It is important to take this

pairing in the data into account when assessing how much on average the

treatment has affected blood pressure.

� Another example would be data from a matched case–control study (see

Section 21.4), in which the data consist of case–control pairs rather than of

two independent groups of cases and controls, with a control specifically

selected to match each case on key variables such as age and sex.

7.2 SAMPLING DISTRIBUTION OF THE DIFFERENCE BETWEEN

TWO MEANS

Before we can construct a confidence interval for the difference between two

means, or carry out the related hypothesis test, we need to know the sampling

distribution of the difference. The difference, �xx1 � �xx0, between the mean outcomes

in the exposed and unexposed groups in our sample provides an estimate of the

underlying difference, �1 � �0, between the mean outcomes in the exposed and

unexposed groups in the population. Just as discussed for a single mean (see

Chapter 6), this sample difference will not be exactly equal to the population

difference. It is subject to sampling variation, so that a different sample from the
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same population would give a different value of �xx1 � �xx0. Providing that each of the

means, �xx1 and �xx0, is normally distributed, then:

1 the sampling distribution of the difference (�xx1 � �xx0) is normally distrib-

uted;

2 the mean of this sampling distribution is simply the difference between the two

population means, �1 � �0;

3 the standard error of (�xx1 � �xx0) is based on a combination of the standard errors

of the individual means:

s:e: ¼ (s:e:21 þ s:e:20)
p ¼ �2

1

n1
þ �2

0

n0

� �s

This is estimated using the sample standard deviations, s1 and s0. Note that when

we calculate the difference between the means in the two groups we combine the

uncertainty in �xx1 with the uncertainty in �xx0.

7.3 METHODS BASED ON THE NORMAL DISTRIBUTION (LARGE

SAMPLES OR KNOWN STANDARD DEVIATIONS)

Confidence interval

When both groups are large (say, greater than 30), or in the rare instances when

the population standard deviations are known, then methods for comparing

means are based on the normal distribution. We calculate 95% confidence inter-

vals for the difference in the population as:

Large samples

CI ¼ (�xx1 � �xx0)� (z0 � s:e:) to (�xx1 � �xx0)þ (z0 � s:e:)

s:e: ¼ s21=n1 þ s20=n0
� �p

or

Known s0s
CI ¼ (�xx1 � �xx0)� (z0 � s:e:) to (�xx1 � �xx0)þ (z0 � s:e:)

s:e: ¼ �2
1=n1 þ �2

0=n0
� �p
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In these formulae z0 is the appropriate percentage point of the normal distribution.

For example, when calculating a 95% confidence interval we use z0 ¼ 1:96.

Example 7.1

To investigate whether smoking reduces lung function, forced vital capacity (FVC,

a test of lung function) was measured in 100 men aged 25–29, of whom 36 were

smokers and 64 non-smokers. Results of the study are shown in Table 7.1.

Table 7.1 Results of a study to investigate the association between smoking and lung function.

Group Number of men Mean FVC (litres) s s.e. of mean FVC

Smokers (1) n1 ¼ 36 �xx1 ¼ 4:7 s1 ¼ 0:6 s:e:1 ¼ 0:6= 36
p ¼ 0:100

Non-smokers (0) n0 ¼ 64 �xx0 ¼ 5:0 s0 ¼ 0:6 s:e:0 ¼ 0:6= 64
p ¼ 0:075

The mean FVC in smokers was 4.7 litres compared with 5.0 litres in non-

smokers. The difference in mean FVC, �xx1 � �xx0, is therefore 4:7� 5:0, that is

�0.3 litres. The s.d. in both groups was 0.6 litres. The standard error of the

difference in mean FVC is calculated from the individual standard errors, which

are shown in the right hand column of the table, as follows:

s:e: ¼ s:e:21 þ s:e:20
� �p ¼ 0:12 þ 0:0752ð Þp ¼ 0:125 litres

The 95% confidence interval for the population difference in mean FVC is there-

fore:

95% CI ¼ �0:3� (1:96� 0:125) to�0:3þ (1:96� 0:125)

¼ �0:545 litres to�0:055 litres

Both the lower and upper confidence limits are negative, and both therefore

correspond to a reduced FVC among smokers compared to non-smokers. With

95% confidence, the reduction in mean FVC in smokers, compared to non-

smokers, lies between 0.055 litres (a relatively small reduction) and 0.545 litres (a

reduction likely to have obvious effects).

z-test

The confidence interval gives a range of likely values for the difference in mean

outcome between exposed and unexposed groups in the population.With reference

to Example 7.1, we now address the related issue of whether the data provide

evidence that the exposure (smoking) actually affects the mean outcome (FVC),

or whether they are consistent with smoking having no effect. In other words, might

the population difference between the two groups be zero? We address this issue by

carrying out a hypothesis (or significance) test.
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A hypothesis test begins by postulating that, in the population, mean FVC is

the same in smokers and non-smokers, so that any observed difference between

the sample means is due to sampling variation. This is called the null hypothesis.

The next step is to calculate the probability, if the null hypothesis were true, of

getting a difference between the two group means as large or larger than the

difference than that was observed. This probability is called a P-value. The idea

is that the smaller the P-value, the stronger is the evidence against the null

hypothesis.

We use the fact that the sampling distribution of (�xx1 � �xx0) is normal to

derive the P-value. If the null hypothesis is true, then the mean of the sampling

distribution, m1 � m0, is zero. Our test statistic is the z-score, or standard normal

deviate (see Chapter 5) corresponding to the observed difference between the

means:

z ¼ difference in means

standard error of difference in means
¼ �xx1 � �xx0

s:e:

The formulae for the z-test are as follows:

Large samples

z ¼ �xx1 � �xx0
s:e:

¼ �xx1 � �xx0

(s21=n1 þ s20=n0)
p

or

Known s0s

z ¼ �xx1 � �xx0
s:e:

¼ �xx1 � �xx0

(�2
1=n1 þ �2

0=n0)
p

The test statistic z measures by how many standard errors the mean difference

(�xx1 � �xx0) differs from the null value of 0. In this example,

z ¼ �0:3

0:125
¼ �2:4
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The difference between the means is therefore 2.4 standard errors below 0, as

illustrated in Figure 7.1. The probability of getting a difference of �2.4 standard

errors or less (the area under the curve to the left of �2.4) is found using a

computer or using Table A1; it is 0.0082. This probability is known as the one-

sided P-value. By convention, we usually use two-sided P-values; our assessment of

the probability that the result is due to chance is based on how extreme the size of

the departure is from the null hypothesis, and not its direction. We therefore

include the probability that the difference might (by chance) have been in the

opposite direction: mean FVC might have been greater in smokers than non-

smokers. Because the normal distribution is symmetrical, this probability is also

0.0082. The ‘two-sided’ P-value is thus found to be 0.0164 (¼ 0:0082þ 0:0082), as

shown in Figure 7.1.

This means that the probability of observing a difference at least as extreme as

2.4, if the null hypothesis of no difference is correct, is 0.0164, or 1.64%. In other

words, if the null hypothesis were true, then sampling variation would yield such a

large difference in the mean FVC between smokers and non-smokers in only about

16 in every 1000 similar-sized studies that might be carried out. Such a P-value

provides evidence against the null hypothesis, and suggests that smoking affects

FVC.

At this point, you may wish to skip forward to Chapter 8, which gives a fuller

description of how to interpret P-values, and how to use P-values and confidence

intervals to interpret the results of statistical analyses.

0.4

0.3

0.2

0.1

0
–4 –3 –2.4 –2 –1 0 1 2 2.4 3 4

Standard errors

P (<–2.4) = 0.0082 P (>2.4) = 0.0082

P-value = 0.0164

Fig. 7.1 Probability that the size of a standard normal deviate (z) is 2.4 standard errors or larger.
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7.4 METHODS BASED ON THE t DISTRIBUTION (SMALL

SAMPLES, EQUAL STANDARD DEVIATIONS)

We saw in Chapter 6 that for small samples we must also allow for the sampling

variation in the standard deviation, s, when deriving a confidence interval for a

mean. Similar considerations arise when we wish to compare means between small

samples. Methods based on the t distribution rather than the normal distribution

are used. These require that the population distributions are normal but, as with

confidence intervals for a single mean, they are robust against departures from this

assumption. When comparing two means, the validity of these methods

also depends on the equality of the two population standard deviations. In

many situations it is reasonable to assume this equality. If the sample standard

deviations are very different in size, however, say if one is more than twice as

large as the other, then an alternative must be used. This is discussed below in

Section 7.5.

Confidence interval

The formula for the standard error of the difference between the means is simpli-

fied to:

s:e: ¼ (�2=n1 þ �2=n0)
p

or � (1=n1 þ 1=n0)
p

where � is the common standard deviation. There are two sample estimates of �

from the two samples, s1 and s0 and these are combined to give a common

estimate, s, of the population standard deviation, with degrees of freedom equal

to (n1 � 1)þ (n0 � 1) ¼ n1 þ n0 � 2.

s ¼ (n1 � 1)s21 þ (n0 � 1)s20
(n1 þ n0 � 2)

� �s

This formula gives greater weight to the estimate from the larger sample as this

will be more reliable. The standard error of the difference between the two means

is estimated by:

s:e: ¼ s (1=n1 þ 1=n0)
p

The confidence interval is calculated using t0, the appropriate percentage point of
the t distribution with (n1 þ n0 � 2) degrees of freedom:
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CI ¼ (�xx1 � �xx0)� (t0 � s:e:) to (�xx1 � �xx0)þ (t0 � s:e:),

d:f :¼ (n1 þ n0 � 2)

Example 7.2

Table 7.2 shows the birth weights of children born to 14 heavy smokers (group 1)

and to 15 non-smokers (group 0), sampled from live births at a large teaching

hospital. The calculations needed to derive the confidence interval are:

difference between the means, �xx1 � �xx0 ¼ 3:1743� 3:6267 ¼ �0:4524

standard deviation, s ¼ 13� 0:46312 þ 14� 0:35842

15þ 14� 2

� �
¼ 0:4121 kg

s

standard error of the difference, s:e: ¼ 0:4121� (1=14þ 1=15
p

) ¼ 0:1531 kg

degrees of freedom, d:f : ¼ 14þ 15� 2 ¼ 27; t 0 ¼ 2:05

The 5% percentage point of the t distribution with 27 degrees of freedom is 2.05,

and so the 95% confidence interval for the difference between the mean birth

weights is:

�0:4524� (2:05� 0:1531) to�0:4524þ (2:05� 0:1531) ¼ �0:77 to�0:14 kg

Table 7.2 Comparison of birth weights (kg) of children born to

14 heavy smokers with those of children born to 15 non-smokers.

Heavy smokers (group 1) Non-smokers (group 0)

3.18 3.99

2.74 3.89

2.90 3.60

3.27 3.73

3.65 3.31

3.42 3.70

3.23 4.08

2.86 3.61

3.60 3.83

3.65 3.41

3.69 4.13

3.53 3.36

2.38 3.54

2.34 3.51

2.71

�xx1 ¼ 3:1743 �xx0 ¼ 3:6267

s1 ¼ 0:4631 s0 ¼ 0:3584

n1 ¼ 14 n0 ¼ 15
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With 95% confidence, mean birth weight is between 0.14 and 0.77 kg lower for

children born to heavy smokers than for those born to non-smokers.

t test

In small samples we allow for the sampling variation in the standard deviations

by using the t distribution for our test of the null hypothesis. This is called a t

test, sometimes also known as an unpaired t test, to distinguish it from the paired

t test for paired measurements, described in Section 7.6. The t value is calculated

as:

t ¼ �xx1 � �xx0
s:e:

¼ �xx1 � �xx0

s (1=n1 þ 1=n0)
p , d:f : ¼ n1 þ n0 � 2

where, as before

s ¼ (n1 � 1)s21 þ (n0 � 1)s20
(n1 þ n0 � 2)

� �s

The corresponding P-value is derived in exactly the same way as for the z

distribution. This is best done using a computer, rather than tables, as it is

impractical to have sets of tables for all the different possible degrees of freedom.

However, an approximate P-value corresponding to different values of the test

statistic t may be derived from Table A4 (see Appendix), which tabulates this for

a selection of degrees of freedom. It can be seen that unless the number of degrees

of freedom is small the P-value based on the normal distribution (right hand

column) does not differ greatly from that based on the t distribution (main part of

table).

Example 7.2 (continued)

The calculations for the t-test to compare the birth weights of children born to 14

heavy smokers with those of children born to 15 non-smokers, as shown in Table

7.2, are as follows:

t ¼ (3:1743� 3:6267)

0:4121 (1=14þ 1=15)
p ¼ � 0:4524

0:1531
¼ �2:95,

d:f : ¼ 14þ 15� 2 ¼ 27, P ¼ 0:0064

66 Chapter 7: Comparison of two means



As the test is two-sided, the P-value corresponding to minus 2.95 is the same as

that corresponding to plus 2.95. Table A4 shows that the P-value corresponding to

t ¼ 3.0 with 25 degrees of freedom is 0.006. The precise P-value of 0.0064 was

derived using a computer. As explained in more detail in Chapter 8, a P-value of

0.0064 provides fairly strong evidence against the null hypothesis. These data

therefore suggest that smoking during pregnancy reduces the birthweight of the

baby.

7.5 SMALL SAMPLES, UNEQUAL STANDARD DEVIATIONS

When the population standard deviations of the two groups are different, and the

sample size is not large, the main possibilities are:

1 seek a suitable change of scale (a transformation, see Chapter 13) which

makes the standard deviations similar so that methods based on the t distribu-

tion can be used. For example, if the standard deviations seem to be propor-

tional in size to the means, then taking logarithms of the individual values may

be appropriate;

2 use non-parametric methods based on ranks (see Section 30.2);

3 use either the Fisher–Behrens or the Welch tests, which allow for unequal

standard deviations (consult Armitage & Berry 2002);

4 estimate the difference between the means using the original measure-

ments, but use bootstrap methods to derive confidence intervals (see Section

30.3).

7.6 PAIRED MEASUREMENTS

In some circumstances our data consist of pairs of measurements, as described in

the introduction to the chapter. These pairs may be two outcomes measured

on the same individual under different exposure (or treatment) circumstances.

Alternatively, the pairs may be two individuals matched during sample selection

to share certain key characteristics such as age and sex, for example in a matched

case–control study or in a clinical trial with matched controls (see Chapter 21).

Our analysis needs to take this pairing in the data into account: this is done

by considering the differences between each pair of outcome observations. In

other words we turn our data of pairs of outcomes into a single sample of

differences.

Confidence interval

The confidence interval for the mean of these differences is calculated using the

methods explained for a single mean in Chapter 6, and depending on the sample

size uses either the normal or the t distribution. In brief, the confidence interval for

the difference between the means is:

AQ1
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Large samples ð60 or more pairsÞ
CI ¼ �xx� (z0 � s:e:) to �xxþ (z0 � s:e:)

or

Small samples ðless than 60 pairsÞ
CI ¼ �xx� (t0 � s:e:) to �xxþ (t0 � s:e:)

where for large samples z0 is the chosen percentage point of the normal distribu-

tion and for small samples t0 is the chosen percentage point of the t distribution

with n� 1 degrees of freedom. (See Table 6.1 for more details.)

Example 7.3

Consider the results of a clinical trial to test the effectiveness of a sleeping drug in

which the sleep of ten patients was observed during one night with the drug and

one night with a placebo. The results obtained are shown in Table 7.3. For each

patient a pair of sleep times, namely those with the drug and with the placebo, was

recorded and the difference between these calculated. The average number of

additional hours slept with the drug compared with the placebo was �xx¼ 1:08,

and the standard deviation of the differences was s ¼ 2:31 hours. The standard

error of the differences is s= n
p ¼ 2:31= 10

p ¼ 0:73 hours.

Table 7.3 Results of a placebo-controlled clinical trial to test the

effectiveness of a sleeping drug.

Hours of sleep

Patient Drug Placebo Difference

1 6.1 5.2 0.9

2 6.0 7.9 �1.9

3 8.2 3.9 4.3

4 7.6 4.7 2.9

5 6.5 5.3 1.2

6 5.4 7.4 �2.0

7 6.9 4.2 2.7

8 6.7 6.1 0.6

9 7.4 3.8 3.6

10 5.8 7.3 �1.5

Mean �xx1 ¼ 6:66 �xx0 ¼ 5:58 �xx¼ 1:08
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Since we have only ten pairs we use the t distribution with 9 degrees of freedom.

The 5% point is 2.26, and so the 95% confidence interval is:

95% CI ¼ 1:08� (2:26� 0:73) to 1:08þ (2:26� 0:73) ¼ �0:57 to 2:73 hours:

With 95% confidence, we therefore estimate the drug to increase average sleeping

times by between �0:51 and 2.73 hours. This small study is thus consistent with an

effect of the drug which ranges from a small reduction in mean sleep time to a

substantial increase in mean sleep time.

Note that the mean of the differences (�xx) is the same as the difference between

the means (�xx1 � �xx0). However, the standard error of �xxwill be smaller than the

standard error of (�xx1 � �xx0) because we have cancelled out the variation between

individuals in their underlying sleep times by calculating within-person differences.

In other words, we have accounted for the between-person variation (see Section

31.4), and so our confidence interval is narrower than if we had used an unpaired

design of a similar size.

Hypothesis test

Hypothesis testing of paired means is carried out using either a paired

z test or paired t test, depending on the same criteria as laid out for

confidence intervals. We calculate the mean of the paired differences, and the

test statistic is:

Large sample

z ¼ �xx

s:e:
¼ �xx

s= n
p or

Small sample

t ¼ �xx

s:e:
¼ �xx

s= n
p , d:f : ¼ n� 1

where �xxis the mean of the paired differences, and n is the number of pairs.

Example 7.3 (continued)

In the above example in Table 7.3 the mean difference in sleep time is 1.08 hours

and the standard error is 0.73 hours. A paired t test gives:

t ¼ 1:08=0:73 ¼ 1:48, d:f : ¼ 9

The probability of getting a t value as large as this in a t distribution with 9 degrees

of freedom is 0.17, so there is no evidence against the null hypothesis that the

drug does not affect sleep time. This is consistent with the interpretation of
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the 95% CI given earlier. An approximate P-value can be found from Table A4

(see Appendix), which shows that if the test statistic is 1.5 with 9 degrees of

freedom then the P-value is 0.168. Further examples of the use of confidence

intervals and P-values to interpret the results of statistical analyses are given in the

next chapter.
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CHAPTER 8

Using P-values and confidence
intervals to interpret the results of

statistical analyses

8.1 Introduction 8.4 Interpretation of P-values

8.2 Testing hypotheses 8.5 Using P-values and confidence

8.3 General form of confidence intervals to interpret the results

intervals and test statistics of a statistical analysis

8.1 INTRODUCTION

In Chapter 7 we described how statistical methods may be used to examine the

difference between the mean outcome in two exposure groups We saw that we

present the results of analyses in two related ways, by reporting a confidence

interval which gives a range of likely values for the difference in the population,

and a P-value which addresses whether the observed difference in the sample could

arise because of chance alone, if there were no difference in the population.

Throughout this book, we will repeat this process. That is, we will:

1 estimate the magnitude of the difference in disease outcome between exposure

groups;

2 derive a confidence interval for the difference; and

3 derive a P-value to test the null hypothesis that there is no association between

exposure and disease in the population.

In this chapter, we consider how to use P-values and confidence intervals to

interpret the results of statistical analyses. We discuss hypothesis tests in more

detail, explain how to interpret P-values and describe some common errors in their

interpretation. We conclude by giving examples of the interpretation of the results

of different studies.

8.2 TESTING HYPOTHESES

Suppose we believe that everybody who lives to age 90 or more is a non-smoker.

We could investigate this hypothesis in two ways:

1 Prove the hypothesis by finding every single person aged 90 or over and checking

that they are all non-smokers.

2 Disprove the hypothesis by finding just one person aged 90 or over who is a

smoker.

In general, it is much easier to find evidence against a hypothesis than to be able to

prove that it is correct. In fact, one view of science (put forward by the philosopher



Karl Popper) is that it is a process of disproving hypotheses. For example, New-

ton’s laws of mechanics were accepted until Einstein showed that there were

circumstances in which they did not work.

Statistical methods formalize this idea by looking for evidence against a very

specific form of hypothesis, called a null hypothesis: that there is no difference

between groups or no association between variables. Relevant data are then col-

lected and assessed for their consistency with the null hypothesis. Links between

exposures and outcomes, or between treatments and outcomes, are assessed by

examining the strength of the evidence against the null hypothesis, as measured by a

P-value (see Section 8.3).

Examples of null hypotheses might be:

� Treatment with beta-interferon has no effect on mean quality of life in patients

with multiple sclerosis.

� Performing radical surgery on men aged 55 to 75 diagnosed with prostate

cancer does not improve their subsequent mortality.

� Living close to power lines does not affect a child’s risk of developing leuk-

aemia.

In some circumstances, statistical methods are not required in order to reject the

null hypothesis. For example, before 1990 themost common treatment for stomach

ulcers was surgery. A pathologist noticed a particular organism (now known as

Helicobacter pylori) was often present in biopsy samples taken from stomach ulcers,

and grew the organism in culture. He then swallowed a glassful, following which he

experienced acute gastritis, and found that the organism progressed to a chronic

infection. No statistical analysis of this experiment was necessary to confidently

deduce this causal link and reject the null hypothesis of no association (B.J.Marshall

et al. 1985, Med J Australia 142; 436–9), although this was confirmed through

antibiotic trials showing that eradicating H. pylori cured stomach ulcers.

Similarly, when penicillin was first used as a treatment for pneumonia in the

1940s the results were so dramatic that no formal trial was necessary. Unfortu-

nately such examples, where the results ‘hit you straight between the eyes’, are rare

in medical research. This is because there is rarely such a one-to-one link between

exposures and outcomes; there is usually much more inherent variability from

person to person. Thus although we know that smoking causes lung cancer, we are

aware that some heavy smokers will live to an old age, and also that some non-

smokers will die prematurely. In other words, smoking increases the risk, but it

does not by itself determine death; the outcome is unpredictable and is influenced

by many other factors.

Statistical methods are used to assess the strength of evidence against a null

hypothesis, taking into account this person-to-person variability. Suppose that we

want to evaluate whether a new drug reduces cholesterol levels. We might study a

group of patients treated with the new drug (the treatment group) and a compar-

able group treated with a placebo (the control group), and discover that cholesterol

levels were on average 5mg per decilitre lower among patients in the treatment

group compared to those in the control group. Before concluding that the drug is
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effective, we would need to consider whether this could be a chance finding. We

address this question by calculating a test statistic and its corresponding P-value

(also known as a significance level). This is the probability of getting a difference of

at least 5mg between the mean cholesterol levels of patients in the treatment and

control groups if the drug really has no effect. The smaller the P-value, the

stronger the evidence against the null hypothesis that the drug has no effect on

cholesterol levels.

8.3 GENERAL FORM OF CONFIDENCE INTERVALS AND TEST

STATISTICS

Note that in all cases the confidence interval is constructed as the sample estimate

(be it a mean, a difference between means or any of the other measures of exposure

effect introduced later in the book), plus or minus its standard error multiplied by

the appropriate percentage point. Unless the sample size is small, this percentage

point is based on the normal distribution (e.g. 1.96 for 95% confidence intervals).

The test statistic is simply the sample estimate divided by its standard error.

95% CI ¼ estimate� (1:96� s:e:) to estimateþ (1:96� s:e:)

Test statistic ¼ estimate

s:e:

The standard error is inversely related to the sample size. Thus the larger the

sample size, the smaller will be the standard error. Since the standard error

determines the width of the confidence interval and the size of the test statistic,

this also implies the following: for any particular size of difference between the two

groups, the larger the sample size, the smaller will be the confidence interval and

the larger the test statistic.

The test statistic measures by how many standard errors the estimate differs

from the null value of zero. As illustrated in Figure 7.1, the test statistic is used to

derive a P-value, which is defined as the probability of getting a difference at least

as big as that observed if the null hypothesis is true. By convention, we usually use

two-sided P-values; we include the possibility that the difference could have been of

the same size but in the opposite direction. Figure 8.1 gives some examples of

how the P-value decreases as the test statistic z gets further away from zero. The

larger the test statistic, the smaller is the P-value. This can also be seen by

examining the one-sided P-values (the areas in the upper tail of the standard

normal distribution), which are tabulated for different values of z in Table A1 in

the Appendix.

Note that we will meet other ways of deriving test statistics later in the book.

For example, we introduce chi-squared tests for association in contingency tables
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Fig. 8.1 Different P-values corresponding to the distance from the null value to the sample mean (expressed

as standard errors). Adapted from original by Dr K. Tilling, with thanks.

in Chapter 17, and likelihood ratio tests for testing hypotheses in regression

models in Chapters 28 and 29. The interpretation of P-values is the same, no

matter how they are derived.

8.4 INTERPRETATION OF P-VALUES

The smaller the P-value, the lower the chance of getting a difference as big as

the one observed if the null hypothesis were true. In other words, the smaller

the P-value, the stronger the evidence against the null hypothesis, as illustrated in

Figure 8.2. If the P-value is large (more than 0.1, say) then the data do not provide

evidence against the null hypothesis, since there is a reasonable chance that the

observed difference could simply be the result of sampling variation. If the P-value

is small (less than 0.001, say) then a difference as big as that observed would be

very unlikely to occur if the null hypothesis were true; there is therefore strong

evidence against the null hypothesis.

It has been common practice to interpret a P-value by examining whether it is

smaller than particular threshold values. In particular P-values less than 0.05 are

often reported as ‘statistically significant’ and interpreted as being small enough to

justify rejection of the null hypothesis. This is why hypothesis tests have often been

called significance tests. The 0.05 threshold is an arbitrary one that became

commonly used in medical and psychological research, largely because P-values

74 Chapter 8: Using P-values and confidence intervals



Weak evidence against
the null hypothesis

Increasing evidence against
the null hypothesis with

decreasing P value

Strong evidence against
the null hypothesis

1

0.1

0.01

0.001

0.0001

P-
va

lu
e

Fig. 8.2 Interpretation of P-values.

were determined by comparing the test statistic against tabulations of specific

percentage points of distributions such as the z and t distributions, as for example

in Table A3 (see Appendix). These days most statistical computer packages

will report the precise P-value rather than simply whether it is less than 0.05,

0.01, etc. In reporting the results of a study, we recommend this precise P-value

should be reported together with the 95% confidence interval, and the results

of the analyses should be interpreted in the light of both. This is illustrated in

Section 8.5.

It should be acknowledged that the 95% confidence level is based on the same

arbitrary value as the 0.05 threshold: a z value of 1.96 corresponds to a P-value of

0.05. This means that if P< 0.05 then the 95% confidence interval will not contain

the null value. However, interpretation of a confidence interval should not focus

on whether or not it contains the null value, but on the range and potential

importance of the different values in the interval.

It is also important to appreciate that the size of the P-value depends on the size

of the sample, as discussed in more detail in Section 8.5. Three common and

serious mistakes in the interpretation of P-values are:

1 Potentially medically important differences observed in small studies, for which

the P-value is more than 0.05, are denoted as non-significant and ignored. To
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protectourselvesagainst thiserror,weshouldalwaysconsider therangeofpossible

values for the difference shown by the confidence interval, as well as the P-value.

2 All statistically significant (P < 0:05) findings are assumed to result from real

treatment effects, whereas by definition an average of one in 20 comparisons in

which the null hypothesis is true will result in P < 0:05.

3 All statistically significant (P < 0:05) findings are assumed to be of medical

importance whereas, given a sufficiently large sample size, even an extremely

small difference in the population will be detected as different from the null

hypothesis value of zero.

These issues are discussed in the context of examples in the following section and

in the context of sample size and power in Chapter 35.

8.5 USING P-VALUES AND CONFIDENCE INTERVALS TO INTERPRET

THE RESULTS OF A STATISTICAL ANALYSIS

We have now described two different ways of making inferences about differences

in mean outcomes between two exposure (or treatment) groups in the target

population from the sample results.

1 A confidence interval gives us the range of values within which we are reason-

ably confident that the population difference lies.

2 The P-value tells us the strength of the evidence against the null hypothesis that

the true difference in the population is zero.

Since both confidence intervals and P-values are derived from the size of the

difference and its standard error, they are of course closely related. For example,

if the 95% confidence interval does not contain the null value, then we know the P-

value must be smaller than 0.05. And vice versa; if the 95% confidence interval does

include the null value, then the P-value will be greater than 0.05. Similarly if the

99% confidence interval does not contain the null value, then the P-value is less

than 0.01. Because the standard error decreases with increasing sample size,

the width of the confidence interval and the size of the P-value are as dependent

on the sample size as on the underlying population difference. For a particular

size of difference in the population, the larger the sample size the narrower will

be the confidence interval, the larger the test statistic and the smaller the P-value.

Both confidence intervals and P-values are helpful in interpreting the results of

medical research, as shown in Figure 8.3.

Example 8.1

Table 8.1 shows the results of five controlled trials of three different drugs to lower

cholesterol levels in middle-aged men and women considered to be at high risk of

a heart attack. In each trial patients were randomly assigned to receive either the

drug (drug group) or an identical placebo (control group). The number of patients

was the same in the treatment and control groups. Drugs A and B are relatively

cheap, while drug C is an expensive treatment. In each case cholesterol levels

were measured after 1 year, and the mean cholesterol in the control group was
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Fig. 8.3 Statistical methods to make inferences about the population from the sample.

Table 8.1 Results of five trials of drugs to lower serum cholesterol.

Trial Drug Cost

No. of patients

per group

Mean cholesterol

(mg/decilitre) in

drug group

Mean cholesterol

(mg/decilitre) in

control group

Reduction

(mg/decilitre)

1 A Cheap 30 140 180 40

2 A Cheap 3000 140 180 40

3 B Cheap 40 160 180 20

4 B Cheap 4000 178 180 2

5 C Expensive 5000 175 180 5

180mg/decilitre. The effect of treatment, measured by the difference in the mean

cholesterol levels in the drug and control groups, varied markedly between the

trials. We will assume that a mean reduction of 40mg/decilitre confers substantial

protection against subsequent heart disease, while a reduction of 20mg/decilitre

confers moderate protection.

What can we infer from these five trials about the effects of the drugs in the

population? Table 8.2 shows the effects (measured by the difference in mean

Table 8.2 Results of five trials of drugs to lower serum cholesterol, presented as mean difference (drug group

minus control group), s.e. of the difference, 95% confidence interval and P-value.

Trial Drug Cost

No. of

patients

per group

Difference in

mean cholesterol

(mg/decilitre)

s.e. of

difference

95% CI for

difference P-value

1 A Cheap 30 �40 40 �118.4 to 38.4 0.32

2 A Cheap 3000 �40 4 �47.8 to �32.2 < 0.001

3 B Cheap 40 �20 33 �84.7 to 44.7 0.54

4 B Cheap 4000 �2 3.3 �8.5 to 4.5 0.54

5 C Expensive 5000 �5 2 �8.9 to �1.1 0.012
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cholesterol between the drug and control groups), together with the standard error

of the difference, the 95% confidence interval and the P-value.

Note that it is sufficient to display P-values accurate to two significant figures

(e.g. 0.32 or 0.012). It is common practice to display P-values less than 1 in 1000 as

‘P < 0:001’ (although other lower limits such as <0:0001 would be equally ac-

ceptable).

� In trial 1 (drug A), mean cholesterol was reduced by 40mg/decilitre. However,

there were only 30 patients in each group. The 95% confidence interval shows

us that the results of the trial are consistent with a difference ranging from an

increase of 38.4mg/decilitre (corresponding to an adverse effect of the drug) to

a very large decrease of 118.4mg/decilitre. The P-value shows that there is no

evidence against the null hypothesis of no effect of drug A.

� In trial 2 (also drug A), mean cholesterol was also reduced by 40mg/decilitre.

This trial was much larger, and the P-value shows that there was strong

evidence against the null hypothesis of no treatment effect. The 95% confidence

interval suggests that the effect of drug A in the population is a reduction in

mean cholesterol of between 32.2 and 47.8mg/decilitre. Given that drug A is

cheap, this trial strongly suggests that it should be used routinely.

Note that the estimated effect of drug A was the same (a mean reduction of

40mg/decilitre) in trials 1 and 2. However because trial 1 was small it

provided no evidence against the null hypothesis of no treatment effect.

This illustrates an extremely important point: in small studies a large

P-value does not mean that the null hypothesis is true. This is summed up in

the phrase ‘Absence of evidence is not evidence of absence’.

Because large studies have a better chance of detecting a given treatment

effect than small studies, we say that they are more powerful. The concept of

power is discussed in more detail in Chapter 35, on choice of sample size.

� In trial 3 (drug B), the reduction in mean cholesterol was 20mg/decilitre, but

because the trialwas small the95%confidence interval iswide (fromareductionof

84.7mg/decilitre to an increase of 44.7mg/decilitre). The P-value is 0.54: there is

no evidence against the null hypothesis that drug B has no effect on cholesterol

levels.

� In trial 4 (also drug B), mean cholesterol was reduced by only 2mg/decilitre.

Because the trial was large the 95% confidence interval is narrow (from a reduc-

tion of 8.5mg/decilitre to an increase of 4.5mg/decilitre). This trial therefore

excludes any important effect of drug B. The P-value is 0.54: there is no evidence

against the null hypothesis that drug B has no effect on cholesterol levels.

Note that there was no effect of drug B in either trial 3 or trial 4, and the

P-values for the two trials were the same. However, examining the confidence
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intervals reveals that they provide very different information about the effect

of drug B. Trial 3 (the small trial) is consistent with either a substantial

benefit or a substantial harmful effect of drug B while trial 4 (the large trial)

excludes any substantial effect of drug B (because the lower limit of the

confidence interval corresponds to a reduction of only 8.5mg per decilitre).

� Finally, trial 5 (drug C), was a very large trial in which there was a 5mg/decilitre

reduction in mean cholesterol in the drug group, compared to the control

group. The P-value shows that there was evidence against the null hypothesis

of no effect of drug C. However, the 95% confidence interval suggests that the

reduction in mean cholesterol in the population is at most 8.9mg/decilitre, and

may be as little as 1.1mg/decilitre. Even though we are fairly sure that drug C

would reduce cholesterol levels, it is very unlikely that it would be used

routinely since it is expensive and the reduction is not of the size required

clinically.

Even when the P-value shows strong evidence against the null hypothesis, it

is vital to examine the confidence interval to ascertain the range of values for

the difference between the groups that is consistent with our data. The

medical importance of the estimated effect should always be considered,

even when there is good statistical evidence against the null hypothesis.

For further discussion of these issues see Sterne and Davey Smith (2001), and

Chapter 35 on choice of appropriate sample size.

AQ1
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CHAPTER 9

Comparison of means from several
groups: analysis of variance

9.1 Introduction Balanced design with replication

9.2 One-way analysis of variance Balanced design without replication

Assumptions Unbalanced design

Relationship with the unpaired t test 9.4 Fixed and random effects

9.3 Two-way analysis of variance

9.1 INTRODUCTION

When our exposure variable has more than two categories, we often wish to

compare the mean outcomes from each of the groups defined by these categories.

For example, we may wish to examine how haemoglobin measurements collected

as part of a community survey vary with age and sex, and to see whether any sex

difference is the same for all age groups. We can do this using analysis of variance.

In general this will be done using a computer package, but we include details of the

calculations for the simplest case, that of one-way analysis of variance, as these are

helpful in understanding the basis of the methods. Analysis of variance may be

seen as a generalization of the methods introduced in Chapters 6 to 8, and is in

turn a special case of multiple regression, which is described in Chapter 11.

We start with one-way analysis of variance, which is appropriate when the

subgroups to be compared are defined by just one exposure, for example in the

comparison of means between different socioeconomic or ethnic groups. Two-way

analysis of variance is also described and is appropriate when the subdivision is

based on two factors such as age and sex. The methods can be extended to the

comparison of subgroups cross-classified by more than two factors.

An exposure variable may be chosen for inclusion in an analysis of variance

either in order to examine its effect on the outcome, or because it represents a

source of variation that it is important to take into account. This is discussed in

more detail in the context of multiple regression (Chapter 11).

This chapter may be omitted at a first reading.

9.2 ONE-WAY ANALYSIS OF VARIANCE

One-way analysis of variance is used to compare the mean of a numerical outcome

variable in the groups defined by an exposure level with two or more categories.

It is called one-way as the exposure groups are classified by just one variable.

The method is based on assessing how much of the overall variation in

the outcome is attributable to differences between the exposure group means:



hence the name analysis of variance. We will explain this in the context of a

specific example.

Example 9.1

Table 9.1(a) shows the mean haemoglobin levels of patients according to type of

sickle cell disease. We start by considering the variance of all the observations,

ignoring their subdivision into groups. Recall from Chapter 4 that the variance is

the square of the standard deviation, and equals the sum of squared deviations of

the observations about the overall mean divided by the degrees of freedom:

Variance, s2 ¼ �(x� �xx)2

(n� 1)

One-way analysis of variance partitions this sum of squares (SS ¼ �(x� �xx)2) into

two distinct components.

1 The sum of squares due to differences between the group means.

2 The sum of squares due to differences between the observations within each

group. This is also called the residual sum of squares.

The total degrees of freedom (n� 1) are similarly divided. The between-groups SS

has (k� 1) d:f :, and the residual SS has (n� k) d:f :, where k is the number of

groups. The calculations for the sickle cell data are shown in Table 9.1(b) and the

results laid out in an analysis of variance table in Table 9.1(c). Note that the

subscript i refers to the group number so that n1, n2 and n3 are the number of

observations in each of the three groups, �xx1, �xx2 and �xx3 are their mean haemo-

globin levels and s1, s2, and s3 their standard deviations. Of the total sum of

squares (¼ 137.85), 99.89 (72.5%) is attributable to between-group variation.

The fourth column of the table gives the amount of variation per degree of

freedom, and this is called the mean square (MS). The test of the null hypothesis

that the mean outcome does not differ between exposure groups is based on a

comparison of the between-groups andwithin-groupsmean squares. If the observed

differences in mean haemoglobin levels for the different types of sickle cell disease

were simply due to chance, the variation between these group means would be

about the same size as the variation between individuals with the same type, while

if they were real differences the between-groups variation would be larger. The

mean squares are compared using the F test, sometimes called the variance-ratio

test.

F ¼ Between-groups MS

Within-groups MS
, d:f : ¼ d:f :Between-groups, d:f :Within-groups

¼ k� 1, n� k

where n is the total number of observations and k is the number of groups.
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Table 9.1 One-way analysis of variance: differences in steady-state haemoglobin levels between patients with

different types of sickle cell disease. Data from Anionwu et al. (1981) British Medical Journal 282: 283–6.

(a) Data.

Type of sickle cell No. of

Haemoglobin (g/decilitre)

disease patients (ni) Mean (�xxi) s.d. (si ) Individual values (x)

Hb SS 16 8.7125 0.8445 7.2, 7.7, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.6, 8.7,

9.1, 9.1, 9.1, 9.8, 10.1, 10.3

Hb S/b-thalassaemia 10 10.6300 1.2841 8.1, 9.2, 10.0, 10.4, 10.6, 10.9, 11.1, 11.9,

12.0, 12.1

Hb SC 15 12.3000 0.9419 10.7, 11.3, 11.5, 11.6, 11.7, 11.8, 12.0, 12.1,

12.3, 12.6, 12.6, 13.3, 13.3, 13.8, 13.9

(b) Calculations.

n ¼ �ni ¼ 16þ 10þ 15 ¼ 41, no. of groups (k) = 3

� x ¼ 7:2þ 7:7þ . . .þ 13:8þ 13:9 ¼ 430:2

� x2 ¼ 7:22 þ 7:72 þ . . .þ 13:82 þ 13:92 ¼ 4651:80

Total: SS ¼ �(x � �xx)2 ¼ � x2 � (� x)2=n ¼ 4651:80�430:22=41 ¼ 137:85

d:f: ¼ n� 1 ¼ 40

Between groups: SS ¼ �ni(�xxi � �xx)2, more easily calculated as �ni�xx
2
i � (�x)2=n

¼ 16 � 8:71252 þ 10 � 10:63002 þ 15 � 12:30002 � 430:22=41 ¼ 99:89

d:f: ¼ k� 1 ¼ 2

Within groups: SS ¼ �(ni � 1)s2i

¼ 15 � 0:84452 þ 9 � 1:28412 þ 14 � 0:94192 ¼ 37:96

d:f: ¼ n� k ¼ 41�3 ¼ 38

(c) Analysis of variance.

Source of variation SS d.f. MS ¼ SS/d.f.
F ¼ Between-groups MS

Within-groups MS

Between groups 99.89 2 49.94 49.9, P < 0:001

Within groups 37.96 38 1.00

Total 137.85 40

F should be about 1 if there are no real differences between the groups and

larger than 1 if there are differences. Under the null hypothesis that the between-

group differences are simply due to chance, this ratio follows an F distribution

which, in contrast to most distributions, is specified by a pair of degrees of

freedom: (k� 1) degrees of freedom in the numerator and (n� k) in the denomin-

ator. P-values for the corresponding test of the null hypothesis (that mean haemo-

globin levels do not differ according to type of sickle-cell disease) are reported by

statistical computer packages.

In Table 9.1(c), F ¼ 49:94=1:00 ¼ 49:9 with degrees of freedom (2,38): the

corresponding P-value is < 0.001. There is thus strong evidence that mean steady-
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state haemoglobin levels differ between patients with different types of sickle

cell disease, the mean being lowest for patients with Hb SS disease, intermediate

for patients with Hb S/b-thalassaemia, and highest for patients with Hb SC disease.

Assumptions

There are two assumptions underlying the analysis of variance and corresponding

F test. The first is that the outcome is normally distributed. The second is that the

population value for the standard deviation between individuals is the same in

each exposure group. This is estimated by the square root of the within-groups

mean square. Moderate departures from normality may be safely ignored, but the

effect of unequal standard deviations may be serious. In the latter case, transform-

ing the data may help (see Chapter 13).

Relationship with the unpaired t test

When there are only two groups, the one-way analysis of variance gives exactly the

same results as the t test. The F statistic (with 1, n� 2 degrees of freedom) exactly

equals the square of the corresponding t statistic (with n� 2 degrees of freedom),

and the corresponding P-values are identical.

9.3 TWO-WAY ANALYSIS OF VARIANCE

Two-way analysis of variance is used when the data are classified in two ways, for

example by age-group and sex. The data are said to have a balanced design if there

are equal numbers of observations in each group and an unbalanced design if

there are not. Balanced designs are of two types, with replication if there is more

than one observation in each group and without replication if there is only one.

Balanced designs were of great importance before the widespread availability of

statistical computer packages, because they can be analysed using simple and

elegant mathematical formulae. They also allow a division of the sum of squares

into different components. However, they are of less importance now that calcu-

lations for analysis of variance are done using a computer.

Balanced design with replication

Example 9.2

Table 9.2 shows the results from an experiment in which five male and five female

rats of each of three strains were treated with growth hormone. The aims were to

find out whether the strains responded to the treatment to the same extent, and

whether there was any sex difference. The measure of response was weight gain

after seven days.

These data are classified in two ways, by strain and by sex. The design is

balanced with replication because there are five observations in each strain–sex
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Table 9.2 Differences in response to growth hormone for five male and five female rats from three different

strains.

(a) Mean weight gains in grams with standard deviations in parentheses (n ¼ 5 for each group).

Strain

Sex A B C

Male 11.9 (0.9) 12.1 (0.7) 12.2 (0.7)

Female 12.3 (1.1) 11.8 (0.6) 13.1 (0.9)

(b) Two-way analysis of variance: balanced design with replication.

Source of variation SS d.f. MS
F ¼ MS effect

MS residual

Main effects

Strain 2.63 2 1.32 1.9, P ¼ 0:17

Sex 1.16 1 1.16 1.7, P ¼ 0:20

Interaction

Strain � sex 1.65 2 0.83 1.2, P ¼ 0:32

Residual 16.86 24 0.70

Total 22.30 29

group. Two-way analysis of variance divides the total sum of squares into four

components:

1 The sum of squares due to differences between the strains. This is said to be the

main effect of the factor, strain. Its associated degrees of freedom are one less

than the number of strains and equal 2.

2 The sum of squares due to differences between the sexes, that is the main effect

of sex. Its degrees of freedom equal 1, one less than the number of sexes.

3 The sum of squares due to the interaction between strain and sex. An interaction

means that the strain differences are not the same for both sexes and, equiva-

lently, that the sex difference is not the same for the three strains. The degrees of

freedom equal the product of the degrees of freedom of the two main effects,

which is 2 � 1 ¼ 2. The use of regression models to examine interaction be-

tween the effects of exposure variables is discussed in Section 29.5.

4 The residual sum of squares due to differences between the rats within each

strain–sex group. Its degrees of freedom equal 24, the product of the number of

strains (3), the number of sexes (2) and one less than the number of observations

in each group (4).

The null hypotheses of no main effect of the two exposures and of no interaction

are examined by using the F test to compare their mean squares with the residual

mean square, as described for one-way analysis of variance. No evidence of any

association was obtained in this experiment.
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Balanced design without replication

In a balanced design without replication there is no residual sum of squares in the

analysis of variance, since there is only one observation in each cell of the table

showing the cross-classification of the two exposures. In such a case, it is assumed

that there is no interaction between the effects of the two exposures, and the

interaction mean square is used as an estimate of the residual mean square for

calculating F statistics for the main effects. The two-way analysis of variance for a

balanced design without replication is an extension of the paired t test, comparing

the values of more than two variables measured on each individual. The two

approaches give the same results when just two variables are measured, and the

F value equals the square of the t value.

Unbalanced design

When the numbers of observations in each cell are not equal the design is said to

be unbalanced. The main consequence, apart from the additional complexity of the

calculations, is that it is not possible to disentangle the effects of the two exposures

on the outcome. Instead, the additional sum of squares due to the effect of one

variable, allowing for the effect of the other, may be calculated. These issues are

explained in more detail in Chapter 11, which describes multiple linear regression.

Unbalanced data are common, and unavoidable, in survey investigations. The

interpretation of clinical trials and laboratory experiments will be simplified if they

have a balanced design, but even when a balanced design is planned this will not

always succeed as, for example, people may withdraw or move out of the area

half-way through a trial, or animals may die during the course of an experiment.

9.4 FIXED AND RANDOM EFFECTS

The effect of exposures can be defined in two ways, as fixed effects or as random

effects. Factors such as sex, age-group and type of sickle cell disease are all fixed

effects since their individual levels have specific values; sex is always male or

female. In contrast, the individual levels of a random effect are not of intrinsic

interest but are a sample of levels representative of a source of variation. For

example, consider a study to investigate the variation in sodium and sucrose

concentrations of home-prepared oral rehydration solutions, in which ten persons

were each asked to prepare eight solutions. In this case, the ten persons are of

interest only as representatives of the variation between solutions prepared by

different persons. Persons is then a random effect. The method of analysis is the

same for fixed and random effects in one-way designs and in two-way designs

without replication, but not in two-way designs with replication (or in higher level

designs). In the latter, if both effects are fixed, their mean squares are compared

with the residual mean square as described above. If, on the other hand, both
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effects are random, their mean squares are compared with the interaction rather

than the residual mean square. If one effect is random and the other fixed, it is the

other way round; the random effect mean square is compared with the residual

mean square, and the fixed effect mean square with the interaction. Analyses with

random effects are described in more detail in Chapter 31.
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CHAPTER 10

Linear regression and correlation

10.1 Introduction 10.3 Correlation

10.2 Linear regression 10.4 Analysis of variance approach to

Estimation of the regression simple linear regression

parameters 10.5 Relationship between correlation

Computer output coefficient and analysis of

Assumptions variance table

Prediction

10.1 INTRODUCTION

Previous chapters have concentrated on the association between a numerical

outcome variable and a categorical exposure variable with two or more levels.

We now turn to the relationship between a numerical outcome and a numerical

exposure. The method of linear regression is used to estimate the best-fitting

straight line to describe the association. The method also provides an estimate

of the correlation coefficient, which measures the closeness (strength) of the linear

association. In this chapter we consider simple linear regression in which only one

exposure variable is considered. In the next chapter we introduce multiple regres-

sion models for the effect of more than one exposure on a numerical outcome.

10.2 LINEAR REGRESSION

Example 10.1

Table 10.1 shows the body weight and plasma volume of eight healthy men. A

scatter plot of these data (Figure 10.1) shows that high plasma volume tends to be

Table 10.1 Plasma volume, and body weight in eight healthy men.

Sample size n ¼ 8, mean body weight �xx¼ 66:875,

mean plasma volume �yy¼ 3:0025.

Subject Body weight (kg) Plasma volume (litres)

1 58.0 2.75

2 70.0 2.86

3 74.0 3.37

4 63.5 2.76

5 62.0 2.62

6 70.5 3.49

7 71.0 3.05

8 66.0 3.12



Fig. 10.1 Scatter diagram of plasma volume and body weight showing the best-fitting linear regression line.

associated with high weight and vice versa. Note that it is conventional to

plot the exposure on the horizontal axis and the outcome on the vertical axis.

In this example, it is obviously the dependence of plasma volume on body weight

that is of interest, so plasma volume is the outcome variable and body weight is the

exposure variable. Linear regression gives the equation of the straight line that

best describes how the outcome y increases (or decreases) with an increase in the

exposure variable x. The equation of the regression line is:

y ¼ �0 þ �1x

where � is the Greek letter beta. We say that �0 and �1 are the parameters or

regression coefficients of the linear regression: �0 is the intercept (the value of y

when x ¼ 0), and �1 the slope of the line (the increase in y for every unit increase in

x; see Figure 10.2).

Estimation of the regression parameters

The best-fitting line is derived using the method of least squares: by finding the

values for the parameters �0 and �1 that minimize the sum of the squared vertical

distances of the points from the line (Figure 10.3). The parameters �0 and �1 are

are estimated using the following formulae:
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Fig. 10.2 The intercept and slope of the regression equation, y ¼ �0 þ �1x. The intercept, �0, is the point

where the line crosses the y axis and gives the value of y for x ¼ 0. The slope, �1, is the increase in y

corresponding to a unit increase in x.

Fig. 10.3 Linear regression line, y ¼ �0 þ �1x, fitted by least squares. �0 and �1 are calculated to

minimize the sum of squares of the vertical deviations (shown by the dashed lines) of the points about

the line; each deviation equals the difference between the observed value of y and the corresponding point

on the line, �0 þ �1x.
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�1 ¼
�(x� �xx)(y� �yy)

�(x� �xx)2
and �0 ¼ �yy� �1�xx

Regression coefficients are sometimes known as ‘beta-coefficients’, and are

labelled in this way by some statistical software packages. When the slope

�1 ¼ 0 this corresponds to a horizontal line at a height of �yyand means that

there is no association between x and y.

In this example:

�(x� �xx)(y� �yy) ¼ 8:96 and �(x� �xx)2 ¼ 205:38

So:

�1 ¼ 8:96=205:38 ¼ 0:043615

and:

�0 ¼ 3:0025� 0:043615� 66:875 ¼ 0:0857

Thus the best-fitting straight line describing the association of plasma volume with

body weight is:

Plasma volume ¼ 0:0857þ 0:0436� weight

which is shown in Figures 10.1 and 10.3.

The regression line is drawn by calculating the co-ordinates of two points which

lie on it. For example:

x ¼ 60, y ¼ 0:0857þ 0:0436� 60 ¼ 2:7

and

x ¼ 70, y ¼ 0:0857þ 0:0436� 70 ¼ 3:1

As a check, the line should pass through the point (�xx, �yy) ¼ (66:9, 3:0). Statistical

software packages will usually allow the user to include the regression line in

scatter plots.

The calculated values for �0 and �1 are estimates of the population values of the

intercept and slope and are, therefore, subject to sampling variation. As with

estimated differences between exposure group means (see Chapter 7) their preci-

sion is measured by their standard errors.
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s:e:(�0) ¼ s
1

n
þ �xx2

�(x� �xx)2

� �s
and s:e:(�1) ¼

s

�(x� �xx)2
p

s ¼ �(y� �yy)2 � �2
1�(x� �xx)2

(n� 2)

" #s

s is the standard deviation of the points about the line. It has (n� 2) degrees of

freedom (the sample size minus the number of regression coefficients). In this

example �(y� �yy)2 ¼ 0:6780 and so:

s ¼ 0:6780� 0:04362 � 205:38

6

r
¼ 0:2189

s:e:(�0) ¼ 0:2189
1

8
þ 66:92

205:38

� �s
¼ 1:0237

and

s:e:(�1) ¼
0:2189

205:38
p ¼ 0:0153

Computer output

Linear regression models are usually estimated using a statistical computer pack-

age. Table 10.2 shows typical output; for our example, plasvol and weight were the

names of the outcome and exposure variables respectively in the computer file. The

output should be interpreted as follows.

1 The regression coefficient for weight is the same as the estimate of �1 calculated

earlier while the regression coefficient labelled ‘Constant’ corresponds to the

estimate of the intercept (�0).

Note that in this example the intercept is not a meaningful number: its literal

interpretation is as the estimated mean plasma volume when weight ¼ 0. The

intercept can be made meaningful by centring the exposure variable: subtracting

its mean so that the new exposure variable hasmean ¼ 0. The intercept in a linear

regression with a centred exposure variable is equal to the mean outcome.

2 The standard errors also agree with those calculated above.

3 The t statistics in the fourth column are the values of each regression coefficient

divided by its standard error. Each t statistic may be used to test the null hypo-

thesis that the corresponding regression coefficient is equal to zero. The degrees
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Table 10.2 Computer output for the linear regression of plasma volume on body weight (data in Table 10.1).

Plasvol Coefficient Std err t P > jtj 95% CI

Weight 0.0436 0.0153 2.857 0.029 0.0063 to 0.0810

Constant 0.0857 1.024 0.084 0.936 �2.420 to 2.591

of freedom are the sample size minus the number of regression coefficients,

n� 2. The corresponding P-values are in the fifth column. In this example, the

P-value for weight is 0.029: there is some evidence against the null hypothesis

that there is no association between body weight and plasma volume. The P-

value for the intercept tests the null hypothesis that the intercept is equal to

zero: this is not usually an interesting null hypothesis but is reported because

computer packages tend to present their output in a uniform manner.

4 The 95% confidence intervals are calculated as:

CI ¼ regression coefficient� t0 � s:e: to regression coefficientþ t0 � s:e:

where t0 is the relevant percentage point of the t distribution with n� 2 degrees

of freedom. In this example the 5% point of the t distribution with 6 d.f. is 2.45,

and so (for example) the lower limit of the 95% CI for �1 is 0:0436� 2:45�
0:0153 ¼ 0:0063. In large samples the 5% point of the normal distribution (1.96)

is used (d:f : ¼ 1 in Table A3, Appendix).

Assumptions

There are two assumptions underlying linear regression. The first is that, for any

value of x, y is normally distributed. The second is that the magnitude of the

scatter of the points about the line is the same throughout the length of the line.

This scatter is measured by the standard deviation, s, of the points about the line

as defined above. More formally, we assume that:

y ¼ �0 þ �1xþ e

where the error, e, is normally distributed with mean zero and standard deviation

�, which is estimated by s (the standard deviation of the points about the line). The

vertical deviations (shown by the dotted lines) in Figure 10.3 are the estimated

errors, known as residuals, for each pair of observations.

A change of scale may be appropriate if either of the two assumptions does not

hold, or if the relationship seems non-linear (see Sections 11.5 and 29.6). It is

important to examine the scatter plot to check that the association is approximately
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linear before proceeding to fit a linear regression. Ways to check the assumptions

made in a linear regression are discussed in more detail in Section 12.3.

Prediction

In some situations it may be useful to use the regression equation to predict the

value of y for a particular value of x, say x0. The predicted value is:

y0 ¼ �0 þ �1x
0

and its standard error is:

s:e:(y0) ¼ s 1þ 1

n
þ (x0 � �xx)2

�(x� �xx)2

" #s

This standard error is least when x0 is close to the mean, �xx. In general, one should

be reluctant to use the regression line for predicting values outside the range of x

in the original data, as the linear relationship will not necessarily hold true beyond

the range over which it has been fitted.

Example 10.1 (continued)

In this example, the measurement of plasma volume is time-consuming and so, in

some circumstances, it may be convenient to predict it from the body weight. For

instance, the predicted plasma volume for a man weighing 66 kg is:

0:0832þ 0:0436� 66 ¼ 2:96 litres

and its standard error equals:

0:2189 1þ 1

8
þ (66� 66:9)2

205:38

" #
¼ 0:23 litres

s

10.3 CORRELATION

As well as estimating the best-fitting straight line we may wish to examine the

strength of the linear association between the outcome and exposure variables.

This is measured by the correlation coefficient, r, which is estimated as:

r ¼ �(x� �xx)(y� �yy)

�(x� �xx)2�(y� �yy)2
� 	q
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where x denotes the exposure, y denotes the outcome, and �xxand �yyare the

corresponding means. Scatter plots illustrating different values of the correlation

coefficient are shown in Figure 10.4. The correlation coefficient is always a

number between �1 and þ1, and equals zero if the variables are not associated.

It is positive if x and y tend to be high or low together, and the larger its value the

closer the association. The maximum value of 1 is obtained if the points in the

scatter plot lie exactly on a straight line. Conversely, the correlation coefficient is

negative if high values of y tend to go with low values of x, and vice versa. The

correlation coefficient has the same sign as the regression coefficient �1. When

there is no correlation �1 equals zero, corresponding to a horizontal regression line

at height �yy(no association between x and y).

Fig. 10.4 Scatter plots illustrating different values of the correlation coefficient. Also shown are the

regression lines.

Example 10.1 (continued)

In this example:

r ¼ 8:96

(205:38� 0:6780)
p ¼ 0:7591
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Table 10.3 Computer output for the linear regression of the derived variable stdplasvol on stdweight (plasma

volume and body weight divided by their standard deviations).

stdplasvol Coefficient Std err t P > t 95% CI

stdweight 0.7591 0.2657 2.86 0.029 0.1089 to 1.4094

Constant 0.2755 3.2904 0.08 0.936 �7.7759 to 8.3268

A useful interpretation of the correlation coefficient is that it is the number of

standard deviations that the outcome y changes for a standard deviation change in

the exposure x. In larger studies (sample size more than about 100), this provides a

simple way to derive a confidence interval for the correlation coefficient, using

standard linear regression. In this example, the standard deviation of body weight

was 5.42 kg, and the standard deviation of plasma volume was 0.31 litres. If we

divide each variable by its standard deviation we can create new variables, each of

which has a standard deviation of 1. We will call these variables stdplasvol and

stdweight: a change of 1 in these variables therefore corresponds to a change of one

standard deviation in the original variables. Table 10.3 shows computer output

from the regression of stdplasvol on stdweight. The regression coefficient for

stdweight is precisely the same as the correlation coefficient calculated earlier.

Note also that the P-values are identical to those in Table 10.2: the null hypothesis

that the correlation r ¼ 0 is identical to the null hypothesis that the regression

coefficient �1 ¼ 0.

For large samples the confidence interval corresponding to the regression coef-

ficient for the modified exposure variable (stdweight in Table 10.3) may be inter-

preted as a confidence interval for the correlation coefficient. In this very small

study, however, the upper limit of the 95% CI is 1.4094, whereas the maximum

possible value of the correlation is 1. For studies whose sample size is less than

about 100, confidence intervals for the correlation coefficient can be derived using

Fisher’s transformation:

zr ¼ 1

2
loge

1þ r

1� r

� �

See Section 13.2 for an explanation of logarithms and the exponential function.

The standard error of the transformed correlation zr is approximately 1= (n� 3)
p

,

and so a 95% confidence interval for zr is:

95% CI ¼ zr � 1:96= (n� 3)
p

to zr þ 1:96= (n� 3)
p

This can then be transformed back to give a confidence interval for r using the

inverse of Fisher’s transformation:
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r ¼ exp(2zr)� 1

exp(2zr)þ 1

In this example, the transformed correlation between weight and plasma volume is

zr ¼ 0:5 loge (1:7591=0:2409) ¼ 0:9941. The standard error of zr is 1= (8�3)p ¼
0:4472. The 95% CI for zr is:

95% CI for zr ¼ 0:9941� 1:96� 0:4472 to 0:9941þ 1:96� 0:4472

¼ 0:1176 to 1:8706

Applying the inverse of Fisher’s transformation to the upper and lower confidence

limits gives a 95% CI for the correlation:

95% CI for r ¼ 0:1171 to 0:9536

10.4 ANALYSIS OF VARIANCE APPROACH TO SIMPLE LINEAR

REGRESSION

We stated earlier that the regression coefficients �0 and �1 are calculated so as to

minimize the sum of squared deviations of the points about the regression line.

This can be compared to the overall variation in the outcome variable, measured

by the total sum of squares

SSTotal ¼ �(y� �yy)2

This is illustrated in Figure 10.5 where the deviations about the line are shown by

the dashed vertical lines and the deviations about the mean, (y� �yy), are shown

by the solid vertical lines. The sum of squared deviations about the best-fitting

regression line is called the residual sum of squares (SSResidual). This is less than

SSTotal by an amount which is called the sum of squares explained by the regression

of plasma volume on body weight, or simply the regression sum of squares

SSRegression ¼ SSTotal � SSResidual

This splitting of the overall variation into two parts can be laid out in an analysis

of variance table (see Chapter 9).

Example 10.1 (continued)

The analysis of variance results for the linear regression of plasma volume on body

weight are presented in Table 10.4. There is 1 degree of freedom for the regression

and n� 2 ¼ 6 degrees of freedom for the residual.

If therewerenoassociationbetween thevariables, then the regressionmeansquare

would be about the same size as the residual mean square, while if the variables

were associated it would be larger. This is tested using an F test, with degrees
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Fig. 10.5 Deviations in the outcome y about the regression line (dashed vertical lines) and about the mean

�yy(solid vertical lines).

Table 10.4 Analysis of variance for the linear regression of plasma volume on body weight (n ¼ 8).

Source of variation

Sum of squares

(SS)

Degrees of

freedom (d.f.)

Mean square

(MS ¼ SS/d.f.)
F ¼ MS regression

MS residual

Regression 0.3907 1 0.3907 8.16, P ¼ 0:029

Residual 0.2873 6 0.0479

Total 0.6780 7 0.0969

of freedom (1, n� 2), as described in Chapter 9. The resulting P-value is identical

to that from the t statistic in the linear regression output presented in Table 10.2.

10.5 RELATIONSHIP BETWEEN CORRELATION COEFFICIENT AND

ANALYSIS OF VARIANCE TABLE

The analysis of variance table gives an alternative interpretation of the correlation

coefficient. The square of the correlation coefficient, r2, equals the regression sum

of squares divided by the total sum of squares (0:762 ¼ 0:5763 ¼ 0:3907=0:6780).

It is thus the proportion of the total variation in plasma volume that has been

explained by the regression. In Example 10.1, we can say that body weight ac-

counts for 57.63% of the total variation in plasma volume.
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CHAPTER 11

Multiple regression

11.1 Introduction variables with more than

11.2 Multiple regression with two two categories

exposure variables 11.4 General form of the multiple

Analysis of variance for regression model

multiple regression 11.5 Multiple regression with non-linear

11.3 Multiple regression with exposure variables

categorical exposure variables 11.6 Relationship between multiple

Regression with binary exposure regression and analysis of variance

variables 11.7 Multivariate analysis

Regression with exposure

11.1 INTRODUCTION

Situations frequently occur in which we wish to examine the dependency of a

numerical outcome variable on several exposure variables, not just one. This is

done using multiple linear regression, a generalization of the methods for linear

regression that were introduced in Chapter 10.

In general, there are two reasons for including extra exposure variables in a

multiple regression analysis. The first is to estimate an exposure effect after

allowing for the effects of other variables. For example, if two exposure groups

differed in respect to other factors, such as age, sex, socioeconomic status, which

were known to affect the outcome of interest, then it would be important to adjust

for these differences before attributing any difference in outcome between the

exposure groups to the exposure. This is described in Section 11.2 below, and is

an example of the control of confounding factors, explained in more detail in

Chapter 18. The second reason is that inclusion of exposure variables that are

strongly associated with the outcome variable will reduce the residual variation and

hence decrease the standard error of the regression coefficients for other exposure

variables. This means that it will increase both the accuracy of the estimation of the

other regression coefficients, and the likelihood that the related hypothesis tests

will detect any real effects that exist. This latter attribute is called the power of the

test and is described in detail in Chapter 35 (‘Calculation of required sample size’).

This second reason applies only when the outcome variable is numerical (and not,

for example, when we use logistic regression to analyse the association of one or

more exposure variables with a binary outcome variable, see Chapters 19 and 20).

Multiple regression can be carried out with any number of variables, although it

is recommended that the number be kept reasonably small, as with larger numbers
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the interpretation becomes increasingly more complex. These issues are discussed

in more detail in the chapters on regression modelling (Chapter 29) and strategies

for analysis (Chapter 38).

11.2 MULTIPLE REGRESSION WITH TWO EXPOSURE VARIABLES

Example 11.1

All the methods will be illustrated using a study of lung function among 636

children aged 7 to 10 years living in a deprived suburb of Lima, Peru. The

maximum volume of air that the children could breathe out in 1 second (Forced

Expiratory Volume in 1 second, denoted as FEV1) was measured using a spirom-

eter. The age and height of the children were recorded, and their carers were asked

about respiratory symptoms that the children had experienced in the last year.

Consider first the relationship of lung function (FEV1) with the two exposure

variables: age and height of the child. It seems likely that FEV1 will increase with

both height and age, and this is confirmed by scatter plots, which suggest that the

relationship of FEV1 with each of these is linear (Figure 11.1). The output from

separate linear regression models for the association between FEV1 and each of

these two exposure variables is shown in Table 11.1.

As is apparent from the scatter plots, there is a strong association between FEV1

and both age and height. The regression coefficients tell us that FEV1 increases by

0.2185 litres for every year of age, and by 0.0311 litres for every centimetre of height.

The regression lines are shown on the scatter plots in Figure 11.1. The correlations

of FEV1 with age and height are 0.5161 and 0.6376, respectively.

As might be expected, there is also a strong association between age and height

(correlation¼ 0.5946). We may therefore ask the following questions:

� what is the association between age and FEV1, having taken the association

between height and FEV1 into account?

� what is the association between height and FEV1, having taken the association

between age and FEV1 into account?

Table 11.1 Computer output for two separate linear regression models for FEV1.

(a) FEV1 and age.

FEV1 Coefficient Std err t P > jtj 95% CI

Age 0.2185 0.0144 15.174 0.000 0.1902 to 0.2467

Constant �0.3679 0.1298 �2.835 0.005 �0.6227 to �0.1131

(b) FEV1 and height.

FEV1 Coefficient Std err t P > jtj 95% CI

Height 0.0311 0.00149 20.840 0.000 0.0282 to 0.0341

Constant �2.2658 0.1855 �12.216 0.000 �2.6300 to �1.9016
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Fig. 11.1 Scatter plots showing the relationship of FEV1 with (a) age and (b) height in 636 Peruvian

children. Analyses and displays by kind permission of Dr M.E. Penny.
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Often, we talk of the effect of a variable having adjusted or controlled for the

effects of the other variable(s) in the model.

These questions may be answered by fitting a multiple regression model for the

effects of height and age on FEV1. The general form of a multiple regression

model for the effects of two exposure variables (x1 and x2) on an outcome variable

(y) is:

y ¼ �0 þ �1x1 þ �2x2

The intercept �0 is the value of the outcome y when both exposure variables x1 and

x2 are zero. In this example:

FEV1 ¼ �0 þ �1 � ageþ �2 � height

This model assumes that for any age, FEV1 is linearly related to height,

and correspondingly that for any height, FEV1 is linearly related to age. Note that

�1 and �2 will be different to the regression coefficients from the simple linear

regressions on age and height separately, unless the two exposure variables are

unrelated.

The way in which the regression coefficients are estimated is the same as for

linear regression with a single exposure variable: the values of �0, �1 and �2 are

chosen to minimize the sum of squares of the differences [ y� (�0 þ �1x1 þ �2x2)]

or, in other words, the variation about the regression. In this example each

observed FEV1 is compared with (�0 þ �1 � ageþ �2 � height). The estimated

regression coefficients are shown in Table 11.2.

The regression output tells us that the best-fitting model is:

FEV1 ¼ �2:3087þ 0:0897� ageþ 0:0250� height

After controlling for the association between FEV1 and height, the regression

coefficient for age is much reduced (from 0.2185 litres/year to 0.0897 litres/year).

There is a smaller reduction in the regression coefficient for height: from

0.0311 litres/cm to 0.0250 litres/cm. The t statistics and corresponding P-values for

age and height test the null hypotheses that, respectively, there is no association of

Table 11.2 Computer output showing the estimated regression coefficients from the multiple regression relating

FEV1 to age and height.

FEV1 Coefficient Std err t P > jtj 95% CI

Age 0.0897 0.0157 5.708 0.000 0.0588 to 0.1206

Height 0.0250 0.0018 13.77 0.000 0.0214 to 0.0285

Constant �2.3087 0.1812 �12.743 0.000 �2.6645 to �1.9529
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FEV1 with age having controlled for its association with height, and no associ-

ation of FEV1 with height having controlled for its association with age.

Note that the P-values in this analysis are not really zero; they are simply too

small to be displayed using the precision chosen by the software package. In this

case the P-values should be interpreted and reported as < 0:001. There is thus

strong evidence that age and height are each associated with FEV1 after control-

ling for one another.

Analysis of variance for multiple regression

Example 11.1 (continued)

We can examine the extent to which the joint effects of age and height explain the

variation in FEV1 in an analysis of variance table (Table 11.3). There are now

2degrees of freedom for the regression as there are two exposure variables. The F

test for this regression is 244.3 with (2,633) degrees of freedom (P < 0:0001).

The regression accounts for 43.56% (25.6383/58.8584) of the total variation in

FEV1. This proportion equals R2, where R ¼ 0:4356
p ¼ 0:66 is defined as the

multiple correlation coefficient. R is always positive as no direction can be attached

to a correlation based on more than one variable.

The sum of squares due to the regression of FEV1 on both age and height

comprises the sum of squares explained by age (¼ 15.6802, derived from the simple

linear regression FEV1 ¼ �0 þ �1 � age) plus the extra sum of squares explained

by height after controlling for age (Table 11.4). This provides an alternative means

of testing the null hypothesis that there is no association of FEV1 with height

having controlled for its association with age. We derive an F statistic using the

residual mean square from the multiple regression:

F ¼ 9:9581=0:05248 ¼ 189:75, d:f ¼ (1,633), P < 0:0001

Again, there is clear evidence of an association of FEV1 with height having

controlled for its association with age. Note that the t statistic for height presented

in the computer output shown in Table 11.2 is exactly the square root of the F

statistic: 189:75
p ¼ 13:77.

Reversing the order in which the variables are entered into the model allows us

to test the null hypothesis that there is no association with age having controlled

for height: this gives an F statistic 32.58, d:f ¼ (1,633), P < 0:0001. Again this

corresponds to the t statistic in Table 11.2: 32:58
p ¼ 5:708.

Table 11.3 Analysis of variance for the multiple regression relating FEV1 to age and height.

Source of variation SS d.f. MS
F ¼ MS regression

MS residual

Regression on age and height of child 25.6383 2 12.8192 244.3, P < 0:0001

Residual 33.2201 633 0.05248

Total 58.8584 635 0.09269
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Table 11.4 Individual contributions of age and height of the child to the multiple regression including both

variables, when age is entered into multiple regression first.

Source of variation SS d.f. MS
F ¼ MS regression

MS residual

Age 15.6802 1 15.6082

Height adjusting for age 9.9581 1 9.9581 189.75, P < 0:0001

Age and height 25.6383 2

Note that these two orders of breaking down the combined regression sum of

squares from Table 11.3 into the separate sums of squares do not give the same

component sums of squares because the exposure variables (age and height) are

themselves correlated. However, the regression coefficients and their correspond-

ing standard errors in Table 11.2 are unaffected by the order in which the exposure

variables are listed.

11.3 MULTIPLE REGRESSION WITH CATEGORICAL

EXPOSURE VARIABLES

Until now, we have included only continuous exposure variables in regression

models. In fact, it is straightforward to estimate the effects of binary or other

categorical exposure variables in regression models. We now show how to do this,

and how the results relate to methods introduced in previous chapters.

Regression with binary exposure variables

We start by considering a binary exposure variable, coded as 0 (unexposed) or

1 (exposed) in the dataset.

Example 11.1 (continued)

A variable that takes only the values 0 and 1 is known as an indicator variable

because it indicates whether the individual possesses the characteristic or not.

Computer output from the linear regression of FEV1 on variable male in the

data on lung function in Peruvian children is shown in Table 11.5. The interpret-

ation of such output is straightforward.

1 The regression coefficient for the indicator variable is the difference between the

mean in boys (variablemale coded as 1) and themean in girls (variablemale coded

as 0). The value of the t statistic (and correspondingP-value) for this coefficient is

identical to that derived from the t test of the null hypothesis that themean in girls

is the same as in boys (see Chapter 7), and the confidence interval is identical to

the confidence interval for the difference in means, also presented in Chapter 7.

2 The regression coefficient for the constant term is the mean in girls (the group

for which the indicator variable is coded as 0).

To see why this is the case, consider the equation for this regression model. This

states that on average:

Au: Pls
Confirm
Changes here
are correct

11.3 Multiple regression with categorical exposure variables 103



Table 11.5 Computer output for the linear regression of FEV1 on gender of the child.

FEV1 Coefficient Std err t P > jtj 95% CI

Male 0.1189 0.0237 5.01 0.000 0.0723 to 0.1655

Constant 1.5384 0.0163 94.22 0.000 1.5063 to 1.5705

FEV1 ¼ �0 þ �1 �male

Thus in girls, mean FEV1 ¼ �0 þ �1 � 0 ¼ �0 and so the estimated value of the

intercept �0 (the regression coefficient for the constant term) is the mean FEV1 in

girls. In boys, mean FEV1 ¼ �0 þ �1 � 1 ¼ �0 þ �1. Therefore:

�1 ¼ mean FEV1 in boys�mean FEV1 in girls

We may wish to ask whether the difference in mean FEV1 between boys and girls

is accounted for by differences in their age or height. This is done by including the

three exposure variables together in a multiple regression model. The regression

equation is:

FEV1 ¼ �0 þ �1 � ageþ �2 � heightþ �3 �male

Output for this model is shown in Table 11.6. The regression coefficient for variable

male (�3) estimates the difference in mean FEV1 in boys compared to girls, having

allowed for the effects of age and height. This is slightly increased compared to the

mean difference before the effects of age and height were taken into account.

Table 11.6 Computer output for the multiple regression of FEV1 on age, height and gender of the child.

FEV1 Coefficient Std err t P > jtj 95% CI

Age 0.0946 0.0152 6.23 0.000 0.0648 to 0.1244

Height 0.0246 0.0018 14.04 0.000 0.0211 to 0.0280

Male 0.1213 0.0176 6.90 0.000 0.0868 to 0.1559

Constant �2.360 0.1750 �13.49 0.000 �2.704 to �2.0166

Regression with exposure variables with more than two categories

The effects of categorical exposures with more than two levels (for example age-

group or extent of exposure to cigarette smoke) are estimated by introducing a

series of indicator variables to describe the differences. First we choose a baseline

group to which the other groups are to be compared: often this is the lowest coded

value of the variable or the group representing the unexposed category. If the

variable has k levels, k� 1 indicator variables are then included, corresponding to

each non-baseline group. This is explained in more detail in the context of logistic

regression, in the box in Section 19.3. The regression coefficients for the indicator
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variables then equal the differences in mean outcome, comparing each non-

baseline group with the baseline.

11.4 GENERAL FORM OF THE MULTIPLE REGRESSION MODEL

The general form of a multiple regression model for the effects of p exposure

variables is:

y ¼ �0 þ �1x1 þ �2x2 þ �3x3 þ . . .þ �pxp þ e

The quantity, �0 þ �1x1 þ �2x2 þ �3x3 þ . . .þ �pxp, on the right-hand side of the

equation is known as the linear predictor of the outcome y, given particular values of

the exposure variables x1 to xp. The error, e, is normally distributed with mean zero

and standard deviation �, which is estimated by the square root of the residualmean

square.

11.5 MULTIPLE REGRESSION WITH NON-LINEAR EXPOSURE

VARIABLES

It is often found that the relationship between the outcome variable and an

exposure variable is non-linear. There are three possible ways of incorporating

such an exposure variable in the multiple regression equation. The first method is

to redefine the variable into distinct subgroups and include it as a categorical

variable using indicator variables, as described in Section 11.3, rather than as a

numerical variable. For example, age could be divided into five-year age-groups.

The relationship with age would then be based on a comparison of the means of the

outcome variable in each age-group (assuming thatmean outcome is approximately

constant in each age group) but would make no other assumption about the form

of the relationship of mean outcome with age. At the initial stages of an analysis, it

is often useful to include an exposure variable in both forms, as a numerical

variable and grouped as a categorical variable. The difference between the two

associated sums of squares can then be used to assess whether there is an important

non-linear component to the relationship. For most purposes, a subdivision into 3–

5 groups, depending on the sample size, is adequate to investigate non-linearity of

the relationship. See Section 29.6 for more detail.

A second possibility is to find a suitable transformation for the exposure

variable. For example, in a study of women attending an antenatal clinic con-

ducted to identify variables associated with the birth weight of their baby, it was

found that birth weight was linearly related to the logarithm of family income

rather than to family income itself. The use of transformations is discussed more

fully in Chapter 13. The third possibility is to find an algebraic description of the

relationship. For example, it may be quadratic, in which case both the variable (x)

and its square (x2) would be included in the model. This is described in more detail

in Section 29.6.
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11.6 RELATIONSHIP BETWEEN MULTIPLE REGRESSION AND

ANALYSIS OF VARIANCE

Analysis of variance is simply a special case of multiple regression. The two

approaches give identical results. A regression model test of the null hypothesis

that there is no difference in mean response between k exposure groups uses an F

test with (k� 1, n� k) degrees of freedom. This is identical to the F statistic

derived using a one-way analysis of variance (see Chapter 9). Similarly, inclusion

of two categorical variables (using indicator variables) in a multiple regression

model will give identical results to a two-way analysis of variance. Analysis of

variance can also be extended to examine differences between groups adjusted for

the effects of numerical exposure variables, as described for multiple regression

above, when the difference in FEV1 between males and females was adjusted for

age and height (Table 11.6). In this context it is sometimes called analysis of

covariance (Armitage and Berry 2002), and the numerical exposure variables are

called covariates.

11.7 MULTIVARIATE ANALYSIS

Multiple regression, andother regressionmodels (seeChapters 19–21, 24 and27) are

often referred to as multivariate methods, since they investigate how an outcome

variable is related tomore than one exposure variable. Abetter term for suchmodels

is to call them multivariable regression models. In the strict statistical sense, multi-

variate analysismeans the studyof howseveral outcomevariables vary together. The

three methods most relevant to medical research will briefly be described. For more

detail see Armitage and Berry (2002) and Everitt and Dunn (2001).

Principal component analysis is a method used to find a few combinations of

variables, called components, that adequately explain the overall observed vari-

ation, and thus to reduce the complexity of the data. Factor analysis is a related

method commonly used in the analysis of psychological tests. It seeks to explain

how the responses to the various test items may be influenced by a number of

underlying factors, such as emotion, rational thinking, etc. Finally, cluster analysis

is a method that examines a collection of variables to see if individuals can be

formed into any natural system of groups. Techniques used include those of

numerical taxonomy, principal components and correspondence analysis.
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CHAPTER 12

Goodness of fit and regression
diagnostics

12.1 Introduction Plots of residuals against fitted values

12.2 Goodness of fit to a normal Influence

distribution What to do if the regression

Inverse normal plots assumptions appear to be violated

Skewness and kurtosis 12.4 Chi-squared goodness of fit test

Shapiro–Wilk test Calculation of expected numbers

12.3 Regression diagnostics Validity

Examining residuals

12.1 INTRODUCTION

In this chapter we discuss how to assess whether the distribution of an observed set

of data agrees with that expected under a particular theoretical model. We start by

considering how to assess whether the distribution of a variable conforms with the

normal distribution, as assumed in the statistical methods described in this part of

the book. We then consider how to check the assumptions made in fitting linear

and multiple regression models. The final part of the chapter is more general. It

describes the chi-squared goodness of fit test for testing whether an observed

frequency distribution differs from the distribution predicted by a theoretical

model.

12.2 GOODNESS OF FIT TO A NORMAL DISTRIBUTION

The assumption of normality underlies the linear regression, multiple regression

and analysis of variance methods introduced earlier in this section. It can be

checked by comparing the shape of the observed frequency distribution with

that of the normal distribution. Formal significance testing is rarely necessary,

as in general we are only interested in detecting marked departures from

normality; the methods are robust against moderate departures so that param-

eter estimates, confidence intervals and hypothesis tests remain valid. If the

sample size is large, visual assessment of the frequency distribution is often

adequate.

The main problem with departures from normality is that the standard errors of

parameter estimates may be wrong. In Chapter 13 we describe how to transform

variables to make them more normally distributed, and in Chapter 30 we see how

to check for this problem by deriving alternative standard errors (for example

using bootstrapping or robust standard errors).



Fig. 12.1 Frequency distributions with inverse normal plots to assess the normality of the data. (a) and (c)

Haemoglobin levels of 70 women (normally distributed, inverse normal plot linear). (b) and (d) Triceps

skinfold measurements of 440 men (positively skewed, inverse normal plot non-linear).

Example 12.1

In Table 3.2 we presented measurements of haemoglobin (g/100ml) in 70 women.

The distribution of these measurements will be compared with that of triceps

skinfold measurements made in 440 men. Histograms of these variables, together

with the corresponding normal distribution curves with the same means and

standard deviations, are shown in Figure 12.1(a) and (b). For haemoglobin the

shape seems reasonably similar to that of the normal distribution, while that for

triceps skinfold is clearly positively (right-) skewed.

Inverse normal plots

The precise shape of the histogram depends on the choice of groups, and it can be

difficult to tell whether or not the bars at the extreme of the distribution are

consistent with the normal distribution. A graphical technique that avoids these

problems is the inverse normal plot. This is a scatter plot comparing the values of

the observed distribution with the corresponding points of the normal distribu-

tion. The inverse normal plot is linear if the data are normally distributed and

curved if they are not. The plot is constructed as follows:

1 The measurements are arranged in order, and the corresponding quantiles of

the distribution are calculated as 1=(nþ 1), 2=(nþ 1), . . . n=(nþ 1). Table

12.1 illustrates the calculations for the haemoglobin data. It shows the
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Table 12.1 Calculations of points for inverse normal plot of 70 haemoglobin measurements.

Observation

no.

Haemoglobin

(g/100ml) Quantile Probit

Inverse normal

¼ 11:98þ probit� 1:41

1 8.8 1/71 ¼ 1.4% �2.195 8.88

34 11.8 34/71 ¼ 49.3% �0.018 11.96

35 11.9 35/71 ¼ 50.7% 0.018 12.01

70 15.1 70/71 ¼ 98.6% 2.195 15.09

minimum (1st), median (34th and 35th) and maximum (70th) haemoglobin

measurements, together with their corresponding quantiles.

2 For each measurement, the probit (the value of the standard normal distribution

corresponding to its quantile) is derived using Table A6 in the Appendix or

(more commonly) using a computer. For example, the value of the standard

normal distribution corresponding to a quantile of 1.4% is�2.195, since 1.4% of

the standard normal distribution lies below this value.

3 The corresponding points of the normal distribution with the same standard

deviation and mean as the data are found by multiplying the probit by

the standard deviation, then adding the mean. This is called the inverse

normal:

Inverse normal ¼ meanþ probit� s:d:

For the haemoglobin data, the mean is 11.98, and the standard deviation is

1.41 g/100ml.

4 Finally, the original values are plotted against their corresponding inverse

normal points. Figure 12.1(c) shows the haemoglobin levels plotted against

their corresponding inverse normal points. If haemoglobin levels are normally

distributed then they should lie along the line of identity (the line where y ¼ x)

shown on the plot. The plot is indeed linear, confirming the visual impression

from the histogram that the haemoglobin data are normally distributed.

In contrast, Figure 12.1(d) shows the non-linear inverse normal plot corres-

ponding to the positively skewed distribution of triceps skinfold measurements

shown in Figure 12.1(b). The line is clearly curved, and illustrates the deficit of

observations on the left and corresponding excess on the right.

Skewness and kurtosis

We now introduce two measures that can be used to assess departures from

normality. In Chapter 4 we saw that the variance is defined as the average of the

squared differences between each observation and the mean:

12.2 Goodness of fit to a normal distribution 109



Variance s2 ¼ �(x� �xx)2

(n� 1)

Because the variance is based on the sum of the squared (power 2) differences

between each observation and the sample mean, it is sometimes called the

second moment, m2 ¼ s2. The third and fourth moments of a distribution are

defined in a similar way, based on the third and fourth powers of the differ-

ences:

Third moment m3 ¼ �(x� �xx)3

n
and Fourth moment m4 ¼ �(x� �xx)4

n

The coefficients of skewness and kurtosis of a distribution are defined as:

skewness ¼ m3m2
�3

2 and kurtosis ¼ m4m2
�2

For any symmetrical distribution, the coefficient of skewness is zero: positive

values of the coefficient of skewness correspond to a right-skewed distribution

while negative values correspond to a left-skewed distribution.

The coefficient of kurtosis measures how spread out are the values of a

distribution. For the normal distribution the coefficient of kurtosis is 3. If

the distribution is more spread out than the normal distribution then the

coefficient of kurtosis will be greater than 3. For example, Figure 6.3 shows

that compared to the normal distribution, the t distribution with 5 degrees of

freedom is more spread out. The kurtosis of the t distribution with 5 d.f. is

approximately 7.6.

Example 12.1 (continued)

For the 70 measurements of haemoglobin (g/100ml) the coefficients of skewness

and kurtosis were 0.170 and 2.51 respectively. This distribution shows little

evidence of asymmetry, since the coefficient of skewness is close to zero. The

coefficient of kurtosis shows that the spread of the observations was slightly less

than would have been expected under the normal distribution. For the 440

measurements of triceps skinfold (mm) the coefficients of skewness and kurtosis

were 1.15 and 4.68 respectively. This distribution is right-skewed and more spread

out than the normal distribution.
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Shapiro–Wilk test

We stated at the start of this section that although the assumption of normality

underlies most of the statistical methods presented in this part of the book, formal

tests of this assumption are rarely necessary. However, the assumption of a normal

distribution may be of great importance if we wish to predict ranges within which a

given proportion of the population should lie. For example, growth charts for

babies and infants include lines within which it is expected that 90%, 99% and

even 99.9% of the population will lie. Departures from normality may be very

important if we wish to use the data to construct such charts.

The Shapiro–Wilk test (Shapiro and Wilk 1965, Royston 1993) is a general

test of the assumption of normality, based on comparing the ordered sample

values with those which would be expected if the distribution was normal (as

done in the inverse normal plots introduced earlier). The mathematics of the

test are a little complicated, but it is available in many statistical computer

packages.

Example 12.1 (continued)

The P-values from the Shapiro–Wilk test were 0.612 for the haemoglobin meas-

urements and < 0.0001 for the triceps measurements. As suggested by the quantile

plots and coefficients of skewness and kurtosis, there is strong evidence against the

assumption of normality for the triceps measurements, but no evidence against

this assumption for the haemoglobin measurements.

12.3 REGRESSION DIAGNOSTICS

Examining residuals

In Chapters 10 and 11 we saw that linear and multiple regression models are fitted

by minimizing the residual sum of squares:

SSresidual ¼ �[ y� (�0 þ �1x1 þ �2x2 þ . . . )]2

The differences [ y� (�0 þ �1x1 þ �2x2 þ . . . )] between the observed outcome

values and those predicted by the regression model (the dashed vertical lines in

Figures 10.3 and 10.5) are called the residuals. As explained in Chapter 10, it is

assumed that the residuals are normally distributed. This assumption can be

examined using the methods introduced in the first part of this chapter.

Example 12.2

Figure 12.2(a) shows a histogram of the residuals from the multiple linear regres-

sion of FEV1 on age, height and sex from the data on lung function in schoolchil-

dren from Peru which were introduced in Chapter 11, while Figure 12.2(b) shows

the corresponding inverse normal plot. The distribution appears reasonably close
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Fig. 12.2 (a) Histogram and (b) inverse normal plot of the residuals from the multiple linear regression of

FEV1 on age, height and sex.

to normal except at the extreme left. The coefficients of skewness and kurtosis are

�0.52 and 4.68 respectively, confirming this impression.

The P-value from the Shapiro–Wilk test is less than 0.0001 so there is clear

evidence that the distribution is not normal. However, Figure 12.2 shows that the

departure from normality is fairly modest and is unlikely to undermine the results

of the analysis. For fairly large datasets such as this one the Shapiro–Wilk test is

extremely sensitive to departures from normality, while the central limit theorem

(see Chapter 5) means that the parameter estimates are likely to be normally

distributed even though the residuals are not.

A particular use of the residual plot is to detect unusual observations (outliers):

those for which the observed value of the outcome is a long way from that

predicted by the model. For example, we might check the data corresponding to

the extreme left of the distribution to make sure that these observations have not

resulted from coding errors in either the outcome or exposure variables. In

general, however, outliers should not be omitted simply because they are at the

extreme of the distribution. Unless we know they have resulted from errors they

should be included in our analyses. We discuss how to identify observations with a

substantial influence on the regression line later in this section.

Plots of residuals against fitted values

Having estimated the parameters of a regression model we can calculate the fitted

values (also called predicted values) for each observation in the data. For example,

the fitted values for the regression of FEV1 on age, height and gender (see Table

11.6) are calculated using the regression equation:

FEV1 ¼ �2:360þ 0:0946� ageþ 0:0246� heightþ 0:1213�male

where the indicator variable male takes the value 0 in girls and 1 in boys. These

values can be calculated for every child in the dataset. If the model fits the data well
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Fig. 12.3 Scatter plot of residuals against fitted values, for the regression of FEV1 on age, height and

gender.

then there should be no association between the fitted values and the residuals.

This assumption can be examined in a scatter plot, as shown in Figure 12.3.

There is no strong pattern in Figure 12.3, but it does seem that the variability in

the residuals increases a little with increasing fitted values, and that there may be a

U-shaped relationship between the residuals and the fitted values. We might

investigate this further by examining models which allow for quadratic or other

non-linear associations between FEV1 and age or height (see Section 29.6).

A common problem is that the variability (spread) of the residuals increases

with increasing fitted values. This may indicate the need for a log transformation of

the outcome variable (see Section 13.2).

Influence

A final consideration is whether individual observations have a large influence on

the estimated regression line. In other words, would the omission of a particular

observation make a large difference to the regression?

Example 12.3

Figure 12.4 is a scatter plot of a hypothetical outcome variable y against an

exposure x. There appears to be clear evidence of an association between x and

y: the slope of the regression line is 0.76, 95% CI ¼ 0.32 to 1.19, P ¼ 0:004.

However, inspection of the scatter plot leads to the suspicion that the association
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Fig. 12.4 Scatter plot of a hypothetical outcome variable y against an exposure x, in which there is a highly

influential observation at the top right of the graph.

is mainly because of the point at the top right of the graph. The point is close to

the regression line, so examining the residuals will not reveal a problem.

To assess the dependence of the regression on individual observations we calcu-

late influence statistics. The most commonly used measure of influence isCook’s D.

These statistics are listed, together with the residuals, in Table 12.2. It can be seen

that observation 10 (the point on the top right of the graph) has much greater

influence than the other observations. It would be appropriate to check whether

this point arose because of an error in coding or data entry, or if there is some

Table 12.2 Data plotted in Figure 12.4, together with the influence statistic and

residual for each observation.

Observation y x Influence (Cook’s D) Residual

1 2.94 3.39 0.01 �0.43

2 3.32 3.83 0.01 �0.38

3 1.44 1.63 0.04 �0.61

4 2.05 3.80 0.15 �1.63

5 2.90 1.94 0.03 0.63

6 2.38 1.30 0.05 0.59

7 2.67 3.07 0.01 �0.45

8 3.85 1.53 0.39 1.89

9 2.60 3.38 0.03 �0.76

10 8.00 8.00 8.25 1.15

114 Chapter 12: Goodness of fit and regression diagnostics



clear explanation for it being different from the rest of the population. As

discussed earlier, observations should not be omitted from the regression purely

because they have large residuals or have a large influence on the results. How-

ever, we might check whether similar conclusions are reached if an observation is

omitted: and perhaps present results both including and excluding a highly influ-

ential observation.

Another useful plot is a scatter plot of influence against residuals (or squared

residual) for each observation. Observations with large influence, large residuals

or both may lead to further checks on the data, or attempts to fit different

regression models. Standardized residuals, which are the residual divided by its

standard error, are also of use in checking the assumptions made in regression

models. These are discussed in more detail in Draper and Smith (1998) and

Weisberg (1985).

What to do if the regression assumptions appear to be violated

The more checks we make, the more likely we are to find possible problems with

our regression model. Evidence that assumptions are violated in one of the ways

discussed here is not a reason to reject the whole analysis. It is very important to

remember that provided that the sample size is reasonably large the results may

well be robust to violation of assumptions. However, possible actions that might

be taken include:

� checks for mistakes in data coding or data entry which have led to outlying or

influential observations;

� exploration of non-linear relationships between the outcome and exposure

variables;

� sensitivity analyses which examine whether conclusions change if influential

observations are omitted;

� use of transformations as described in the next chapter;

� use of methods such as bootstrapping to derive confidence intervals independ-

ently of the assumptions made in the model about the distribution of the

outcome variable. These are discussed in Chapter 30.

12.4 CHI-SQUARED GOODNESS OF FIT TEST

It is sometimes useful to test whether an observed frequency distribution differs

significantly from a postulated theoretical one. This may be done by comparing the

observed and expected frequencies using a chi-squared test. The form of the test is:

�2 ¼ �
(O� E)2

E
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This is exactly the same as that for contingency tables, which is introduced in

Chapter 17. Like the t distribution, the shape of the chi-squared distribution

depends on the degrees of freedom. Here, these equal the number of groups in

the frequency distribution minus 1, minus the number of parameters estimated

from the data. In fitting a normal distribution, two parameters are needed, its

mean, m, and its standard deviation, s. In some cases no parameters are estimated

from the data, either because the theoretical model requires no parameters, as in

Example 12.4 below, or because the parameters are specified as part of the model.

d:f : ¼
number of groups

in frequency

distribution

�
number of

parameters

estimated

� 1

Calculation of expected numbers

The first step in carrying out a chi-squared goodness of fit test is to estimate the

parameters needed for the theoretical distribution from the data. The next step is

to calculate the expected numbers in each category of the frequency distribution,

by multiplying the total frequency by the probability that an individual value falls

within the category.

Expected

frequency
¼ total

frequency
� probability individual falls

within category

For discrete data, the probability is calculated by a straightforward application of

the distributional formula. This is illustrated later in the book for the Poisson

distribution (see Example 28.3).

Validity

The chi-squared goodness of fit test should not be used if more than a small

proportion of the expected frequencies are less than 5 or if any are less than 2. This

can be avoided by combining adjacent groups in the distribution.

Example 12.4

Table 12.3 examines the distribution of the final digit of the weights recorded in a

survey, as a check on their accuracy. Ninety-six adults were weighed and their

weights recorded to the nearest tenth of a kilogram. If there were no biases in

recording, such as a tendency to record only whole or half kilograms, one would

expect an equal number of 0s, 1s, 2s . . . and 9s for the final digit, that is 9.6 of each.
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Table 12.3 Check on the accuracy in a survey of recording weight.

Final digit of weight Observed frequency Expected frequency

(O� E)2

E

0 13 9.6 1.20

1 8 9.6 0.27

2 10 9.6 0.02

3 9 9.6 0.04

4 10 9.6 0.02

5 14 9.6 2.02

6 5 9.6 2.20

7 12 9.6 0.60

8 11 9.6 0.20

9 4 9.6 3.27

Total 96 96.0 9.84

The agreement of the observed distribution with this can be tested using the chi-

squared goodness of fit test. There are ten frequencies and no parameters have

been estimated.

�2 ¼ �
(O� E)2

E
¼ 9:84, d:f : ¼ 10� 0� 1 ¼ 9, P ¼ 0:36

The observed frequencies therefore agree well with the theoretical ones, suggesting

no recording bias.
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CHAPTER 13

Transformations

13.1 Introduction Non-linear relationship

13.2 Logarithmic transformation Analysis of titres

Positively skewed distributions 13.3 Choice of transformation

Unequal standard deviations 13.4 z-scores and reference curves

Geometric mean and confidence interval

13.1 INTRODUCTION

The assumption of normality will not always be satisfied by a particular set of data.

For example, a distribution may be positively skewed and this will often mean that

the standard deviations in different groups will be very different. Or a relationship

between the outcome and exposure variable(s) may not be linear, violating the

assumptions of the linear andmultiple regressionmethods introduced in this part of

the book. We will now describe how such problems can often be overcome simply

by transforming the data to a different scale of measurement. By far the most

common choice is the logarithmic transformation, which will be described in detail.

A summary of the use of other transformations will then be presented.

Finally, in the last section of the chapter, we describe the use of z-scores to

compare data against reference curves in order to improve their interpretability. In

particular, we explain why this is the standard approach for the analysis of

anthropometric data.

13.2 LOGARITHMIC TRANSFORMATION

When a logarithmic transformation is applied to a variable, each individual value

is replaced by its logarithm.

u ¼ log x

where x is the original value and u the transformed value. The meaning of

logarithms is easiest to understand in reverse. We will start by explaining this

for logarithms to the base 10.

If x ¼ 10u, then by definition ‘u is the logarithm (base 10) of x’



Fig. 13.1 The logarithmic transformation, using base 10 (lower line) and base e (upper line).

Thus, for example, since 100 ¼ 102, 2 ¼ log10(100), and since 0:1 ¼ 10�1,

�1 ¼ log10(0.1). Different values of x and log10(x) are shown in the lower part

of Figure 13.1. The logarithmic transformation has the effect of stretching out the

lower part of the original scale, and compressing the upper part. For example, on

a logarithmic scale, the distance between 1 and 10 is the same as that between 10

and 100 and as that between 100 and 1000; they are all ten-fold differences.

Although logarithms to base 10 are most easily understood, statistical packages

generally use logarithms to base e, where e is the ‘natural constant’:

e ¼ 2:7182818

The function ex is called the exponential function and is often written as exp(x).

If x ¼ eu, then by definition ‘u is the logarithm (base e) of x’

Logarithms to base e are also known as natural logarithms. For example,

7:389 ¼ e2 so 2 ¼ loge(7.389), 20:086 ¼ e3 so 3 ¼ loge(20.086), and 0:3679 ¼ e�1

so�1 ¼ loge(0.3679). Different values of x and loge(x) are shown in the upper part

of Figure 13.1. Note that logarithms to base 10 are simply logarithms to base e

multiplied by a constant amount:

log10(x) ¼ log10(e)� loge(x) ¼ 0:4343� loge(x)

Throughout this book, we will use logarithms to base e (natural logarithms).

We will omit the subscript, and refer simply to log(x). The notation ln(x) is

also used to refer to natural logarithms. For more on the laws of logarithms

see Section 16.5, where we show how logarithmic transformations are used

to derive confidence intervals for ratio measures such as risk ratios and odds

ratios.
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Logarithmic transformations can only be usedwith positive values, since logarithms

of negative numbers do not exist, and the logarithm of zero is minus infinity. There

are sometimes instances, however, when a logarithmic transformation is indicated,

as in the case of parasite counts, but the data contain some zeros as well as positive

numbers. This problem can be solved by adding a constant to each value before

transforming, although it must be remembered that the choice of the constant does

affect the results obtained. One is a common choice. Note also that 1 must then also

be subtracted after the final results have been converted back to the original scale.

Positively skewed distributions

Example 13.1

The logarithmic transformation will tend to normalize positively skewed distribu-

tions, as illustrated by Figure 13.2, which is the result of applying a logarithmic

transformation to the triceps skinfold data presented in Figure 12.1(b). The

histogram is now symmetrical and the inverse normal plot linear, showing that

the transformation has removed the skewness and normalized the data. Triceps

skinfold is said to have a lognormal distribution.

Fig. 13.2 Lognormal distribution of triceps skinfold measurements of 440 men. Compare with Figure 12.1

(b) and (d).

Unequal standard deviations

Example 13.2

The mechanics of using a logarithmic transformation will be described by con-

sidering the data of Table 13.1(a), which show a higher mean urinary b-thrombo-

globulin (b-TG) excretion in 12 diabetic patients than in 12 normal subjects. These

means cannot be compared using a t test since the standard deviations of the two

groups are very different. The right-hand columns of the table show the observa-

tions after a logarithmic transformation. For example, loge(4:1) ¼ 1:41.

The transformation has had the effects both of equalizing the standard devi-

ations (they are 0.595 and 0.637 on the logarithmic scale) and of removing

skewness in each group (see Figure 13.3). The t test may now be used to examine
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Table 13.1 Comparison of urinary b-thromboglobulin (b-TG) excretion in 12 normal subjects and in 12 diabetic

patients. Adapted from results by van Oost, B.A., Veldhuyzen, B., Timmermans, A.P.M. & Sixma, J.J. (1983)

Increased urinary b-thromboglobulin excretion in diabetes assayed with a modified RIA, Kit-Technique. Thrombosis

and Haemostasis (Stuttgart) 49 (1): 18–20, with permission.

(a) Original and logged data.

b-TG Logb-TG

(ng/day/100ml creatinine) (log ng/day/100ml creatinine)

Normals Diabetics Normals Diabetics

4.1 11.5 1.41 2.44

6.3 12.1 1.84 2.49

7.8 16.1 2.05 2.78

8.5 17.8 2.14 2.88

8.9 24.0 2.19 3.18

10.4 28.8 2.34 3.36

11.5 33.9 2.44 3.52

12.0 40.7 2.48 3.71

13.8 51.3 2.62 3.94

17.6 56.2 2.87 4.03

24.3 61.7 3.19 4.12

37.2 69.2 3.62 4.24

Mean 13.53 35.28 2.433 3.391

s.d. 9.194 20.27 0.595 0.637

n 12 12 12 12

(b) Calculation of t test on logged data.

s ¼ [(11� 0:5952 þ 11� 0:6372)=22] ¼ 0:616
p

t ¼ 2:433� 3:391

0:616 1=12
p þ 1=12

¼ �3:81, d:f: ¼ 22, P ¼ 0:001

(c) Results reported in original scale.

Geometric mean b-TG 95% CI

Normals exp(2.433) ¼ 11.40 7.81 to 16.63

Diabetics exp(3.391) ¼ 29.68 19.81 to 44.49

differences in mean log b-TG between diabetic patients and normal subjects. The

details of the calculations are presented in Table 13.1(b).

Geometric mean and confidence interval

Example 13.2 (continued)

When using a transformation, all analyses are carried out on the transformed

values, u. It is important to note that this includes the calculation of any
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Fig. 13.3 b-Thromboglobulin data (Table 13.1) drawn using (a) a linear scale and (b) a logarithmic scale.

Note that the logarithmic scale has been labelled in the original units.

confidence intervals. For example, the mean log b-TG of the normals was

2.433 log ng/day/100ml. Its 95% confidence interval is:

95% CI ¼ 2:433� 2:20� 0:595= 12
p

to 2:433� 2:20� 0:595= 12
p

¼ 2:055 to 2:811 ng=day=100 ml

Note that 2.20 is the 5% point of the t distribution with 11 degrees of freedom.

When reporting the final results, however, it is sometimes clearer to transform

them back into the original units by taking antilogs (also known as exponentiat-

ing), as done in Table 13.1(c). The antilog of the mean of the transformed values is

called the geometric mean.

Geometric mean (GM) ¼ antilog(�uu) ¼ exp(�uu) ¼ e�uu

For example, the geometric mean b-GT of the normal subjects is:

Antilog(2:433) ¼ e2:433 ¼ 11:39 ng=day=100 ml

The geometric mean is always smaller than the corresponding arithmetic mean

(unless all the observations have the same value, in which case the two measures

are equal). Unlike the arithmetic mean, it is not overly influenced by the very large
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values in a skewed distribution, and so gives a better representation of the average

in this situation.

Its confidence interval is calculated by exponentiating the confidence limits

calculated on the log scale. For the normal subjects, the 95% confidence interval

for the geometric mean therefore equals:

95% CI ¼ exp(2:055) to exp(2:811) ¼ 7:81 to 16:63 ng=day=100 ml

Note that the confidence interval is not symmetric about the geometric mean.

Instead the ratio of the upper limit to the geometric mean, 16:63=11:39 ¼ 1:46, is

the same as the ratio of the geometric mean to the lower limit, 11:39=7:81 ¼ 1:46.

This reflects the fact that a standard deviation on a log scale corresponds to a

multiplicative rather than an additive error on the original scale. For the same

reason, the antilog of the standard deviation is not readily interpretable, and is

therefore not commonly used.

Non-linear relationship

Example 13.3

Figure 13.4(a) shows how the frequency of 6-thioguanine (6TG) resistant lympho-

cytes increases with age. The relationship curves upwards and there is greater scatter

of the points at older ages. Figure 13.4(b) shows how using a log transformation for

the frequency has both linearized the relationship and stabilized the variation.

In this example, the relationship curved upwards and the y variable (frequency)

was transformed. The equivalent procedure for a relationship that curves down-

wards is to take the logarithm of the x value.

Fig. 13.4 Relationship between frequency of 6TG-resistant lymphocytes and age for 37 individuals drawn

using (a) a linear scale, and (b) a logarithmic scale for frequency. Reprinted from Morley et al.Mechanisms of

Ageing and Development 19: 21–6, copyright (1982), with permission from Elsevier Science.
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Analysis of titres

Many serological tests, such as the haemagglutination test for rubella antibody,

are based on a series of doubling dilutions, and the strength of the most dilute

solution that provides a reaction is recorded. The results are called titres, and are

expressed in terms of the strengths of the dilutions: 1/2, 1/4, 1/8, 1/16, 1/32, etc. For

convenience, we will use the terminology more loosely, and refer instead to the

reciprocals of these numbers, namely 2, 4, 8, 16, 32, etc., as titres. Titres tend to be

positively skewed, and are therefore best analysed using a logarithmic transform-

ation. This is accomplished most easily by replacing the titres with their corres-

ponding dilution numbers. Thus titre 2 is replaced by dilution number 1, titre 4 by

2, titre 8 by 3, titre 16 by 4, titre 32 by 5, and so on. This is equivalent to taking

logarithms to the base 2 since, for example, 8 ¼ 23 and 16 ¼ 24.

u ¼ dilution number ¼ log2 titre

All analyses are carried out using the dilution numbers. The results are then

transformed back into the original units by calculating 2 to the corresponding

power.

Example 13.4

Table 13.2 shows the measles antibody levels of ten children one month

after vaccination for measles. The results are expressed as titres with their cor-

responding dilution numbers. The mean dilution number is �uu¼ 4:4. We antilog

this by calculating 24:4 ¼ 21:1. The result is the geometric mean titre and

equals 21.1.

Geometric mean titre ¼ 2mean dilution number

Table 13.2 Measles antibody levels one month after vaccination.

Child no. Antibody titre Dilution no.

1 8 3

2 16 4

3 16 4

4 32 5

5 8 3

6 128 7

7 16 4

8 32 5

9 32 5

10 16 4
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13.3 CHOICE OF TRANSFORMATION

As previously mentioned, the logarithmic transformation is by far the most fre-

quently applied. It is appropriate for removing positive skewness and is used on a

great variety of variables including incubation periods, parasite counts, titres,

dose levels, concentrations of substances, and ratios. There are, however, alter-

native transformations for skewed data as summarized in Table 13.3. For

example, the reciprocal transformation is stronger than the logarithmic, and

would be appropriate if the distribution were considerably more positively

skewed than lognormal, while the square root transformation is weaker. Negative

skewness, on the other hand, can be removed by using a power transformation, such

as a square or a cubic transformation, the strength increasing with the order of the

power.

Table 13.3 Summary of different choices of transformations. Those removing positive skewness are called

group A transformations, and those removing negative skewness group B.

Situation Transformation

Positively skewed distribution (group A)

Lognormal Logarithmic (u ¼ log x)

More skewed than lognormal Reciprocal (u ¼ 1=x)

Less skewed than lognormal Square root (u ¼ x
p

)

Negatively skewed distribution (group B)

Moderately skewed Square (u ¼ x2)

More skewed Cubic (u ¼ x3)

Unequal variation

s.d. proportional to mean Logarithmic (u ¼ log x)

s.d. proportional to mean2 Reciprocal (u ¼ 1=x)

s.d. proportional to mean
p

Square root (u ¼ x
p

)

Non-linear relationship Transform: y variable and/or x variable

Group A ( y ) Group B (x)

Group B ( y ) Group A ( x )

Group A ( y ) Group A ( x )

Group B ( y ) Group B ( x )
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There is a similar choice of transformation for making standard deviations

more similar, depending on how much the size of the standard error increases

with increasing mean. (It rarely decreases.) Thus, the logarithmic transformation

is appropriate if the standard deviation increases approximately in proportion to

the mean, while the reciprocal is appropriate if the increase is steeper, and the

square root if it is less steep.

Table 13.3 also summarizes the different sorts of simple non-linear relationships

that might occur. The choice of transformation depends on the shape of the curve

and whether the y variable or the x variable is to be transformed.

13.4 z -SCORES AND REFERENCE CURVES

In this section we consider a different type of transformation; namely the use of z-

scores to compare data against reference curves in order to improve their interpret-

ability. Their most common use is for the analysis of anthropometric data.

For example, an individual’s weight and height cannot be interpreted unless they

are related to the individual’s age and sex. More specifically they need to be

compared to the distribution of weights (or heights) for individuals of the same

age and sex in an appropriate reference population, such as the NCHS/WHO*

growth reference data.

Recall from Section 5.4 that a z-score expresses how far a value is from the

population mean, and expresses this difference in terms of the number of standard

deviations by which it differs. In the context here, a z-score is used to compare a

particular value with the mean and standard deviation for the corresponding

reference data:

z-score ¼ x� �

�

where x is the observed value, � is the mean reference valuey and � the standard

deviation of the corresponding reference data. A z-score is therefore a value from

the standard normal distribution.

*NCHS/WHO growth reference data for height and weight of US children collected by the National

Center for Health Statistics and recommended by the World Health Organization for international use.

yThe NCHS/WHO reference curves were developed by fitting two separate half normal distributions

to the data for each group. Both distributions were centred on the median value for that age. One

distribution was fitted so that its upper half matched the spread of values above the median, and the

other so that its lower half matched the spread of values below the median. The upper half of the first

curve was then joined together at the median with the lower half of the second curve. This means that

the z-score calculations use the median value for that age, and the standard deviation corresponding to

either the upper or the lower half of the distribution for that age, depending on whether the observed

value is respectively above or below the median.
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The analysis can then be carried out with the calculated z-scores as the

outcome variable. Such a z-score value will have the same interpretation regard-

less of the age or sex of the individual. Thus, for example, individuals with weight-

for-age z-scores of �2 or below compare approximately with the bottom 2% of

the reference population, since 2.3% of the standard normal curve lies below

�2 (see Appendix A1). This interpretation is true whatever the ages of the

individuals.

Example 13.5

An example of an analysis based on z-scores is given in Figure 13.5, which

shows the mean weight-for-age z-scores (based on the NCHS/WHO growth

curves) during the first 5 years of life for children in the Africa, Asia and

Latin America/Caribbean regions. A mean z-score of zero would imply that the

average weight of children in the region is exactly comparable to the average

weight of American children of the same age in the NCHS/WHO reference

population. A mean z-score above zero would imply that children in the region

were on average heavier than their reference counterparts, while a mean

z-score below zero implies that on average they are lighter. The curves in

Figure 13.5 illustrate how in all three regions there is rapid growth faltering that

starts between 3 and 6months of age, and that by one year of age in all

three regions the average child is very considerably underweight compared to
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Fig. 13.5 Comparison of weight for age by region for children aged less than 5 years. Reprinted with

permission from Shrimpton R, Victora CG, de Onis M, Lima RC, Bloessner M, Clugston G, Worldwide timing

of growth faltering. Pediatrics 2001; 107: E75
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their counterparts in the reference population. It further shows that the level of

disadvantage is most pronounced in Asia and least so in Latin America/Carib-

bean, with Africa in between.

See the report by the WHO Expert Committee on Physical Status (1995) for a

detailed guide to the analysis and interpretation of anthropometric data.

AQ1
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PART C

ANALYSIS OF BINARY OUTCOMES

In this part of the book we describe methods that are used when the outcome is a

binary variable; a variable where for each individual in the sample the value is one of

two alternatives. For example, at the end of the study a subject may have experi-

enced the particular disease (or event) of interest, or remained healthy. Other

examples are that a patient dies or survives, or that a specimen is positive or negative.

Of particular interest is the proportion ( p) of individuals in our sample who

experience the event of interest. We use this sample proportion to estimate the

probability or risk of the event in the population as a whole. For example, we

might be interested in:

� the risk of death in the five years following diagnosis of prostate cancer;

� the risk of vertical transmission of HIV during pregnancy or childbirth in HIV-

infected mothers given antiretroviral therapy during pregnancy.

Probabilities, risks and the related concept of the odds of an event are described

in Chapter 14, together with the rules for calculating and manipulating probabil-

ities. This lays the foundations for the rest of this part of the book. In Chapter 15,

we derive the sampling distribution of a proportion, which is known as the

binomial distribution, and show how it can be approximated by the normal

distribution to give a confidence interval and z-test for a single proportion. In

Chapter 16 we describe different ways to compare the occurrence of a binary

outcome in two exposure groups; by examining the difference between the pro-

portions, the ratio of the risks, or the ratio of the odds. In Chapter 17, we cover the

use of chi-squared tests to examine associations between categorical exposure and

outcome variables.

Confounding, which was briefly introduced in Chapter 11, is explained in detail

in Chapter 18. It arises when there are differences between the exposure groups, in

addition to the exposure itself, which are related to the outcome variable. We

show how Mantel–Haenszel methods may be used to control for confounding

using stratification; failure to do this would bias the interpretation of the compari-

son of the exposure groups.

In Chapter 19 we introduce logistic regression for the analysis of binary outcome

variables, and describe how it can be used to compare two or more exposure

groups. We extend this in Chapter 20, by explaining the control of confounding

using logistic regression, and briefly describing other regression models for binary

and categorical outcome variables. Finally, Chapter 21 introduces the special

methods needed for matched data, in particular matched case–control studies.
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CHAPTER 14

Probability, risk and odds (of disease)

14.1 Introduction Multiplicative rule

14.2 Defining probability Additive rule

Frequentist definition: probability 14.4 Bayes’ rule

and risk 14.5 The independence assumption

Subjective (or Bayesian) definition 14.6 Probabilities and odds

14.3 Probability calculations

14.1 INTRODUCTION

Probability has already been used several times in preceding chapters, its meaning

being clear from the context. We now need to introduce it more formally and to

give rules for manipulating it, before we can introduce methods for the analysis of

binary outcome variables. We need to do this for two reasons:

1 There is a close link between the proportion of individuals in the sample who

experience the event of interest defined by the binary outcome variable, and the

definition of the probability or risk that an individual in the population as a

whole will experience the outcome event (see Section 14.2).

2 We need to be able to carry out calculations involving probabilities in order to

be able to derive the binomial distribution that describes the sampling distribu-

tion of a proportion. This is done in the next chapter.

14.2 DEFINING PROBABILITY

Frequentist definition: probability and risk

Although probability is a concept used in everyday life, and one with which we have

an intuitive familiarity, it is difficult to define exactly. The frequentist definition is

usually used in statistics. This states that the probability of the occurrence of a

particular event equals the proportion of times that the event would (or does) occur

in a large number of similar repeated trials. It has a value between 0 and 1, equalling

0 if the event can never occur and 1 if it is certain to occur. A probability may also be

expressed as a percentage, taking a value between 0% and 100%. For example,

suppose a coin is tossed thousands of times and in half the tosses it lands head up

and in half it lands tail up. The probability of getting a head at any one toss would be

defined as one-half, or 50%.

Similarly the probability of death in the five years following diagnosis of prostate

cancer would be defined as the proportion of times that this would occur among

a large number of men diagnosed with prostate cancer. This probability is then



said to be the risk of death in the five years following diagnosis of prostate

cancer.

Subjective (or Bayesian) definition

An alternative approach is to use a subjective definition, where the size of the

probability simply represents one’s degree of belief in the occurrence of an event,

or in an hypothesis. This definition corresponds more closely with everyday usage

and is the foundation of the Bayesian approach to statistics. In this approach, the

investigator assigns a prior probability to the event (or hypothesis) under investi-

gation. The study is then carried out, the data collected and the probability

modified in the light of the results obtained, using Bayes’ rule (see Section 14.4).

The revised probability is called the posterior probability. The Bayesian approach

to statistical inference is described in Chapter 33.

14.3 PROBABILITY CALCULATIONS

There are just two rules underlying the calculation of all probabilities. These are:

1 the multiplicative rule for the probability of the occurrence of both of two events,

A and B, and;

2 the additive rule for the occurrence of at least one of event A or event B. This is

equivalent to the occurrence of either event A or event B (or both).

We will illustrate these two rules in the context of the following example.

Example 14.1

Consider a couple who plan to have two children. There are four possible com-

binations for the sexes of these children, as shown in Table 14.1. Each combin-

ation is equally likely and so has a probability of 1/4.

Table 14.1 Possible combinations for the sexes of

two children, with their probabilities.

Second child

First child Boy Girl

1/2 1/2

Boy 1/2 1/4 1/4

(boy, boy) (boy, girl)

Girl 1/2 1/4 1/4

(girl, boy) (girl, girl)

Multiplicative rule

In fact each of these probabilities of 1/4 derives from the individual probabilities

of the sexes of each of the children. Consider in more detail the probability that

both children are girls. The probability that the first child is a girl is 1/2. There is
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then a probability of 1/2 of this (i.e. 1/2 of 1=2 ¼ 1=4) that the second child will

also be a girl. Thus:

Prob (both children are girls) ¼ prob (first child is a girl)�
prob (second child is a girl)

¼ 1=2� 1=2 ¼ 1=4

The general rule for the probability of both of two events is:

Prob (A and B) ¼ prob (A)� prob (B given that A has occurred)

Prob (B given that A has occurred) is called a conditional probability, as it is the

probability of the occurrence of event B conditional upon the occurrence of event

A. If the likelihood of event B is unaffected by the occurrence or non-occurrence

of event A, and vice versa, events A and B are said to be independent and the rule

simplifies to:

Prob (A and B) ¼ prob (A) � prob (B), if A and B are independent

The sexes of children are independent events as the probability that the next child

is a girl is uninfluenced by the sexes of the previous children. An example with

dependent events is the probability that a young girl in India is both anaemic and

malnourished, since she is much more likely to be anaemic if she is malnourished

than if she is not. We explore how Bayes’ rule can help us understand relations

between dependent events in Section 14.4.

Additive rule

We now turn to the additive rule, which is used for calculating the probability that

at least one of event A or event B occurs. This is equivalent to either (i) A alone

occurs, or (ii) B alone occurs, or (iii) both A and B occur. For example, consider the

probability that the couple will have at least one girl if they have two children. We

can see from Table 14.1 that this would happen in three of the four possible

outcomes; it would not happen if both children were boys. The probability that

the couple would have at least one girl is therefore 3=4. Note that it is not simply the

sum of the probability that the first child is a girl plus the probability that the second

child is a girl. Both these probabilities are 1=2 and would sum to 1 rather than the

correct 3=4. This is because the possibility that both children are girls is included in

each of the individual probabilities and has therefore been double-counted.
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The additive rule for the calculation of the probability of occurrence of at least

one of two events A and B is therefore:

Prob (A or B or both) ¼ prob (A)þ prob (B)� prob (both)

In Example 14.1

Prob (at least one girl) ¼ prob (1st child is girl)þ prob (2nd child is girl)

� prob (both are girls)

¼ 1=2þ 1=2� 1=4 ¼ 3=4

From our example, it is also clear that an alternative formulation is:

Prob (A or B or both) ¼ 1� prob (A doesn0t occur and B doesn0t occur)

since

Prob (at least one girl) ¼ 1� prob (1st is not a girl and 2nd is not a girl)

or equivalently, 1� prob (both children are boys) ¼ 1� 1=4 ¼ 3=4

14.4 BAYES’ RULE

We will now introduce Bayes’ rule, which is the basis of the Bayesian approach to

statistics, introduced in Section 14.2 and described in Chapter 33. We saw above

that the general rule for the probability of both of two events is

Prob (A and B) ¼ prob (A) � prob (B given A)

where we havewritten the conditional probability prob (B given that A has occurred)

more concisely as prob (B given A). We now show how this leads to Bayes’ rule for

relating conditional probabilities. Switching A and B in the above formula gives:

Prob (B and A) ¼ prob (B) � prob (A given B)

Since the left hand sides of these two equations are exactly the same, that is the

probability that both A and B occur, the right hand sides of the two equations

must be equal:

Prob (A) � prob (B given A) ¼ prob (B) � prob (A given B)
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Rearranging this by dividing both sides of this equation by prob (A) gives Bayes’

rule for relating conditional probabilities:

Prob (B given A) ¼ prob (B) � prob (A given B)

prob (A)

This allows us to derive the probability of B given that A has happened from the

probability of A given that B has happened. The importance of this will become

clear in Chapter 33 on the Bayesian approach to statistics. Here, we will just

illustrate the calculation with an example.

Example 14.2

Suppose that we know that 10% of young girls in India are malnourished, and

that 5% are anaemic, and that we are interested in the relationship between the

two. Suppose that we also know that 50% of anaemic girls are also malnourished.

This means that the two conditions are not independent, since if they were then

only 10% (not 50%) of anaemic girls would also be malnourished, the same

proportion as the population as a whole. However, we don’t know the relationship

the other way round, that is what percentage of malnourished girls are also

anaemic. We can use Bayes’ rule to deduce this. Writing out the probabilities

gives:

Probability (malnourished) ¼ 0:1

Probability (anaemic) ¼ 0:05

Probability (malnourished given anaemic) ¼ 0:5

Using Bayes rule gives:

Prob (anaemic given malnourished)

¼ prob (anaemic) � prob (manourished given anaemic)

prob (malnourished)

¼ 0:05 � 0:5

0:1
¼ 0:25

We can thus conclude that 25%, or one quarter, of malnourished girls are also

anaemic.

14.5 THE INDEPENDENCE ASSUMPTION

Standard statistical methods assume that the outcome for each individual is

independent of the outcome for other individuals. In other words, it is assumed

that the probability that the outcome occurs for a particular individual in the

sample is unrelated to whether or not it has occurred for the other individuals. An

example where this assumption is violated is when different individuals in the same
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family (for example siblings) are sampled, because the outcome for an individual is

on average more similar to that for their sibling than to the rest of the population.

The data are then clustered, and special methods that allow for the clustering must

be used. These are described in Chapter 31.

14.6 PROBABILITIES AND ODDS

In this section, we introduce the concept of odds and examine how they relate to

probability. The odds of an event are commonly used in betting circles. For

example, a bookmaker may offer odds of 10 to 1 that Arsenal Football Club

will be champions of the Premiership this season. This means that the bookmaker

considers the probability that Arsenal will not be champions is 10 times the

probability that they will be. Most people have a better intuitive understanding

of probability than odds, the only common use of odds being in gambling (see

below). However, as we will see in Chapters 16 to 21, many of the statistical

methods for the analysis of binary outcome variables are based on the odds of an

event, rather than on its probability.

More formally, the odds of event A are defined as the probability that A does

happen divided by the probability that it does not happen:

Odds (A) ¼ prob (A happens)

prob (A does not happen)
¼ prob (A)

1� prob (A)

since 1� prob (A) is the probability that A does not happen. By manipula-

ting this equation, it is also possible to express the probability in terms of the

odds:

Prob (A) ¼ Odds (A)

1þOdds (A)

Thus it is possible to derive the odds from the probability, and vice versa.

When bookmakers offer bets they do so in terms of the odds that the

event will not happen, since the probability of this is usually greater than

that of the event happening. Thus, if the odds on a horse in a race are 4

to 1, this means that the bookmaker considers the probability of the horse

losing to be four times greater than the probability of the horse winning. In

other words:

Odds (horse loses) ¼ prob (horse loses)

prob (horse wins)
¼ 4
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Table 14.2 Values of the odds, for

different values of the probability.

Probability Odds

0 0

0.001 0.001001

0.005 0.005025

0.01 0.010101

0.05 0.052632

0.1 0.111111

0.2 0.25

0.5 1

0.9 9

0.95 19

0.99 99

0.995 199

0.999 999

1 1

Using the equation above, it follows that prob (horse loses) ¼ 4=(1þ 4) ¼ 0:8,

and the probability that it wins is 0.2.

Table 14.2 shows values of the odds corresponding to different values of the

probability. It can be seen that the difference between the odds and the probability

is small unless the probability is greater than about 0.1. It can also be seen that

while probabilities must lie between 0 and 1, odds can take any value between 0

and infinity (1). This is a major reason why odds are commonly used in the

statistical analysis of binary outcomes. Properties of odds are summarized in

the box below.

BOX 14.1 PROPERTIES OF THE ODDS

� Both prob (A) and 1� prob (A) lie between 0 and 1. It follows that the

odds lie between 0 (when prob (A) ¼ 0) and 1 (when prob (A) ¼ 1)

� When the probability is 0.5, the odds are 0:5=(1� 0:5) ¼ 1

� The odds are always bigger than the probability (since 1� prob (A) is less

than one)

� Importantly: When the probability is small (about 0.1 or less), the odds are

very close to the probability. This is because for a small probability

[1� prob (A)] ffi 1 and so prob (A)=[1� prob (A)] ffi prob (A)
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15.1 INTRODUCTION

In this chapter we start by introducing the notation for binary outcome variables

that will be used throughout the book. These are outcomes where for each

individual in the sample the outcome is one of two alternatives. For example, at

the end of the study a subject may have experienced the particular disease (or

event) of interest (D), or remained healthy (H). Throughout this part, we will label

the two possible outcomes as D (disease) or H (healthy), regardless of the actual

categories. Examples of other outcome variables are that a patient dies (D) or

survives (H), or that a specimen is positive (D) or negative (H). It is not necessary

that D refers to an adverse outcome; for example, in a smoking cessation study,

our outcome may be that a participant has (D) or has not (H) successfully quit

smoking after 6months.

Of particular interest is the proportion (p) of individuals in our sample in

category D, that is the number of subjects who experience the event (denoted by

d) divided by the total number in the sample (denoted by n). The total who do not

experience the event will be denoted throughout by h ¼ n� d.

p ¼ d

n

We use this sample proportion to estimate the probability or risk (see Section

14.2) that an individual in the population as a whole will be in category D rather

than H.
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Example 15.1

Suppose that in a trial of a new vaccine, 23 of 1000 children vaccinated showed

signs of adverse reactions (such as fever or signs of irritability) within 24 hours of

vaccination. The proportion exhibiting an adverse reaction was therefore:

p ¼ 23=1000 ¼ 0:023 or 2:3%

We would then advise parents of children about to be vaccinated that the vaccine

is associated with an estimated 2.3% risk of adverse reactions. See Section 15.5 for

how to calculate a confidence interval for such a proportion.

The (unknown) probability or risk that the outcome D occurs in the population is

denoted by � (Greek letter pi; not related here to the mathematical constant

3.14159). Its estimation is, of course, subject to sampling variation, in exactly the

same way as the estimation of a population mean from a sample mean, described

in Section 4.5. In the following sections, we derive the sampling distribution of a

proportion, which is known as the binomial distribution, and then show how it

can be approximated by the normal distribution to give a confidence interval and

z-test for a single proportion. Finally, we define two types of proportion that are

of particular importance in medical research; cumulative incidence (risk) and

prevalence.

15.2 BINOMIAL DISTRIBUTION: THE SAMPLING DISTRIBUTION OF A

PROPORTION

The sampling distribution of a proportion is called the binomial distribution and can

be calculated from the sample size, n, and the population proportion, �, as shown

in Example 15.2. � is the probability that the outcome for any one individual is D.

Example 15.2

A man and woman each with sickle cell trait (AS; that is, heterozygous for the

sickle cell [S] and normal [A] haemoglobin genes) have four children. What is the

probability that none, one, two, three, or four of the children have sickle cell

disease (SS)?

For each child the probability of being SS is the probability of having inherited

the S gene from each parent, which is 0:5� 0:5 ¼ 0:25 by the multiplicative rule of

probabilities (see Section 14.3). The probability of not being SS (i.e. of being AS or

AA) is therefore 0.75. We shall call being SS category D and not being SS category

H, so � ¼ 0:25.

The probability that none of the children is SS (i.e. d ¼ 0) is 0:75�
0:75� 0:75� 0:75 ¼ 0:754 ¼ 0:3164 (0:754 means 0.75 multiplied together four

times). This is by the multiplicative rule of probabilities.

The probability that exactly one child is SS (i.e. d ¼ 1) is the probability that

(first child SS; second, third, fourth not SS) or (second child SS; first, third, fourth
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not SS) or (third child SS; first, second, fourth not SS) or (fourth child SS; first,

second, third not SS). Each of these four possibilities has probability 0:25� 0:753

(multiplicative rule) and since they cannot occur together the probability of one or

other of them occurring is 4� 0:25� 0:753 ¼ 0:4219, by the additive rule of

probabilities (see Section 14.3).

Table 15.1 Calculation of the probabilities of the possible numbers of children who have inherited sickle cell

(SS) disease, in a family of four children where both parents have the sickle cell trait. (The probability that an

individual child inherits sickle cell disease is 0.25.)

No. of children Probability

With SS

(d )

WithoutSS

(h)

No. of ways in which

combination could occur
Prob (d events) ¼ n!

d!(n� d)!
�d(1� �)n�d

0 4 1 1� 1� 0:754 ¼ 0:3164

1 3 4 4� 0:25� 0:753 ¼ 0:4219

2 2 6 6� 0:252 � 0:752 ¼ 0:2109

3 1 4 4� 0253 � 0:75 ¼ 0:0469

4 0 1 1� 0:254 � 1 ¼ 0:0039

Total ¼ 1.0000

In similar fashion, one can calculate the probability that exactly two, three, or

four children are SS by working out in each case the different possible arrange-

ments within the family and adding together their probabilities. This gives the

probabilities shown in Table 15.1. Note that the sum of these probabilities is 1,

which it has to be as one of the alternatives must occur.

The probabilities are also illustrated as a probability distribution in Figure 15.1.

This is the binomial probability distribution for � ¼ 0:25 and n ¼ 4.

Fig. 15.1 Probability distribution of the number of children in a family of four with sickle cell disease where

both parents have the sickle cell trait. The probability that a child inherits sickle cell disease is 0.25.
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General formula for binomial probabilities

The general formula for the probability of getting exactly d events in a sample of n

individuals when the probability of D for each individual is � is:

Prob (d events) ¼ n!

d!(n� d)!
�d(1� �)n�d

The first part of the formula represents the number of possible ways in which d

events could be observed in a sample of size n, and the second part equals the

probability of each of these ways.

� The exclamation mark denotes the factorial of the number and means all the

integers from the number down to 1multiplied together. (0! is defined to equal 1.)

� �d means � multiplied together d times or, in mathematical terminology, � to

the power d. Any number to the power zero is defined to equal 1.

� Note that when � equals 0.5, (1� �) also equals 0.5 and the second part of the

formula simplifies to 0:5n.

The interested reader may like to practise the application of the above formula by

checking the calculations presented in Table 15.1. For example, applying the

formula in the above example to calculate the probability that exactly two out

of the four children are SS gives:

Prob (2 SS children) ¼ 4!

2!(4� 2)!
0:252(1� 0:25)4�2

¼ 4� 3� 2� 1

2� 1� 2� 1
0:252(0:75)2

¼ 6� 0:252 � 0:752 ¼ 0:2109

The first part of the formula may be more easily calculated using the following

expression, where (n� d )! has been cancelled into n!

n!

d!(n� d)!
¼ n� (n� 1)� (n� 2) � . . .� (n� d þ 1)

d � (d � 1) � . . . 3� 2� 1

For example, if n ¼ 18 and d ¼ 5, (n� d þ 1) ¼ 18� 5 þ 1 ¼ 14 and the expres-

sion equals:

18� 17� 16� 15� 14

5� 4� 3� 2� 1
¼ 1028160

120
¼ 8568
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Shape of the binomial distribution

Figure 15.2 shows examples of the binomial distribution for various values

of � and n. These distributions have been illustrated for d, the number of

events in the sample, although they apply equally to p, the proportion of

events. For example, when the sample size, n, equals 5, the possible values

for d are 0, 1, 2, 3, 4 or 5, and the horizontal axis has been labelled accordingly.

The corresponding proportions are 0, 0.2, 0.4, 0.6, 0.8 and 1 respectively. Relabel-

ling the horizontal axis with these values would give the binomial distribution for

p. Note that, although p is a fraction, its sampling distribution is discrete and not

continuous, since it may take only a limited number of values for any given sample

size.

Fig. 15.2 Binomial distribution for various values of � and n. The horizontal scale in each diagram shows

values of d.
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15.3 STANDARD ERROR OF A PROPORTION

Since the binomial distribution is the sampling distribution for the number (or

proportion) of D’s, its mean equals the population mean and its standard deviation

represents the standard error, which measures how closely the sample value

estimates the population value. The population means and standard errors can

be calculated from the binomial probabilities; the results are given in Table 15.2

for the number, proportion and percentage of events. The percentage is, of course,

just the proportion multiplied by 100.

Table 15.2 Population mean and standard error for the number, proportion and percentage of D’s in a sample.

Observed value Population mean Standard error

Number of events d n� [n�(1� �)]
p

Proportion of events p ¼ d=n � [�(1� �)=n]
p

Percentage of events 100p 100� 100 [�(1� �)=n]
p

15.4 NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

As the sample size n increases the binomial distribution becomes very close to a

normal distribution (see Figure 15.2), and this can be used to calculate confidence

intervals and carry out hypothesis tests as described in the following sections. In

fact the normal distribution can be used as a reasonable approximation to the

binomial distribution if both n� and n� n� are 10 or more. This approximating

normal distribution has the same mean and standard error as the binomial

distribution (see Table 15.2).

15.5 CONFIDENCE INTERVAL FOR A SINGLE PROPORTION USING THE

NORMAL DISTRIBUTION

The calculation and interpretation of confidence intervals was explained in detail in

Chapters 6 and 8.Using the binomial distribution to derive a confidence interval for

a proportion is complicated. Methods that do this are known as exact methods and

are described in more detail by Altman et al. (2000), and by Clayton and Hills

(1993). The usual approach is to use the approximation to the normal distribution

with � estimated by p, the standard error estimated by [p
p

(1� p)=n] (see Table

15.2), and methods similar to those described in Chapter 6 for means. This is valid

providing that both np and n� np are 10 or more, so that the normal approx-

imation to the binomial distribution is sufficiently good. The confidence interval is:

CI ¼ p� (z0 � s:e:) to p þ (z0 � s:e:),

s:e: ¼ p
[ p(1� p)=n]
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where z0 is the appropriate percentage point of the standard normal distribution.

For example, for a 95% confidence interval, z0 ¼ 1:96.

Example 15.3

In September 2001 a survey of smoking habits was conducted in a sample of 1000

teenagers aged 15–16, selected at random from all 15–16 year-olds living in Bir-

mingham, UK. A total of 123 reported that they were current smokers. Thus the

proportion of current smokers is:

p ¼ 123=1000 ¼ 0:123 ¼ 12:3%

The standard error of p is estimated by [ p(1� p)=n]
p ¼ 0:123� 0:877=1000 ¼p

0:0104. Thus the 95% confidence interval is:

95% CI ¼ 0:123� (1:96� 0:0104) to 0:123 þ (1:96� 0:0104) ¼ 0:103 to 0:143

With 95% confidence, in September 2001 the proportion of 15–16 year-olds living

in Birmingham who smoked was between 0.103 and 0.143 (or equivalently,

between 10.3% and 14.3%).

15.6 z-TEST THAT THE POPULATION PROPORTION HAS A

PARTICULAR VALUE

The approximating normal distribution (to the binomial sampling distribution)

can also be used in a z-test of the null hypothesis that the population proportion

equals a particular value, �. This is valid provided that both n� and n� n� are

greater than or equal to 10. The z-test compares the size of the difference between

the sample proportion and the hypothesized value, with the standard error. The

formula is:

z ¼ p� �

s:e:( p)
¼ p� �

[�(1� �)=n]
p

In exactly the same way as explained in Chapter 8, we then derive a P-value, which

measures the strength of the evidence against the null hypothesis that p ¼ �.

Example 15.3 (continued)

In 1998 the UK Government announced a target of reducing smoking among

children from the national average of 13% to 9% or less by the year 2010, with a

fall to 11% by the year 2005. Is there evidence that the proportion of 15–16 year-

Au1: confirm
p correct
here
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old smokers in Birmingham at the time of our survey in 2001 was below the

national average of 13% at the time the target was set?

The null hypothesis is that the population proportion is equal to 0.13 (13%).

The sampling distribution for the number of smokers, if the null hypothesis is true,

is therefore a binomial distribution with � ¼ 0:13 and n ¼ 1000. The standard

error of p under the null hypothesis is:

s:e:(�) ¼ [0:13(1� 0:13)=1000]
p ¼ 0:0106: Therefore z ¼ 0:123� 0:13

0:0106
¼ �0:658

The corresponding P-value is 0.51. There is no evidence that the proportion of

teenage smokers in Birmingham in September 2001 was lower than the national

1998 levels.

Continuity correction

When either n� or n� n� are below 10, but both are 5 or more, the accuracy of

hypothesis tests based on the normal approximation can be improved by the

introduction of a continuity correction (see also Section 17.2). The continuity cor-

rection adjusts the numerator of the test statistic so that there is a closer fit between

the P-value based on the z-test and the P-value based on an exact calculation using

the binomial probabilities. This is illustrated in Figure 15.3 and Table 15.3, which

show that incorporating a continuity correction and calculating the area under the

normal curve above 8.5 gives a close approximation to the exact binomial probabil-

ity of observing 9 events or more. In contrast the area of the normal curve above 9
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Fig. 15.3 Comparison of the binomial distribution (n ¼ 12, � ¼ 0:5) with the approximating normal

distribution to illustrate the need for a continuity correction for small n. This shows that the area under

the normal curve above 8.5 is closer to the shaded exact probabilities than the area above 9.
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Table15.3 Comparisons of the different methods of calculating the probability of observing 9 or

more events, when n ¼ 12 and � ¼ 0:5.

Probability of observing 9 or more events, when n ¼ 12 and � ¼ 0:5

Calculated using binomial probabilities:

9 events 220� 0:512 ¼ 0:0537

10 events 66� 0:512 ¼ 0:0161

11 events 12� 0:512 ¼ 0:0029

12 events 1� 0:512 ¼ 0:0002

Total of 9þ events 0.0729

Using approximating normal distribution:

Based on area above 9 0.0418

With continuity correction, based on area above 8.5 0.0749

is not a good approximation. More details are not included here since continuity

corrections are not often used in modern medical statistics. This is because they

can’t be extended to the regression models, described in Chapter 19 and later in

the book, which are used to examine the effects of a number of exposure variables

on a binary outcome.

15.7 INCIDENCE AND PREVALENCE

We now define two particular types of proportion that are of particular relevance

in medical research. These are the cumulative incidence (or risk) of a disease event,

and the prevalence of a disease.

Cumulative incidence (risk)

The cumulative incidence or risk, r, of a disease event is the probability that

the disease event occurs during a specified period of time. It is estimated by the

number of new cases of a disease during a specified period of time divided

by the number of persons initially disease-free and therefore at risk of contracting

the disease.

Risk ¼ cumulative incidence ¼ number of new cases of disease in period

number initially disease-free

For example, we might be interested in:

� the risk of death in the five years following diagnosis with prostate cancer;

� the risk of vertical transmission of HIV during pregnancy or childbirth in HIV-

infected mothers given antiretroviral therapy during pregnancy.

Risks usually refer to adverse (undesirable) events, though this is not essential.
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Example 15.4

Suppose we study 5000 individuals aged 45 to 54, with no existing cardiovascular

disease. Ten years later, the same individuals are followed up and we find that 147

have died from or have developed coronary heart disease. Then the risk of

coronary heart disease is the proportion of individuals who developed the disease:

147=5000 ¼ 0:0294, or 2.94%.

Prevalence

In contrast, the prevalence represents the burden of disease at a particular time,

rather than the chance of future disease. It is based on the total number of existing

cases among the whole population, and represents the probability that any one

individual in the population is currently suffering from the disease.

Prevalence ¼ number of people with the disease at particular point in time

total population

For example, we might be interested in:

� the prevalence of schistosomiasis among villagers living on the shore of Lake

Malawi;

� the prevalence of chronic lower back pain among refuse collectors in Bristol,

UK.

Example 15.5

Suppose we study a sample of 2000 individuals aged 15 to 50, registered with a

particular general practice. Of these, 138 are being treated for asthma. Then the

prevalence of diagnosed asthma in the practice population is the proportion of the

sample with asthma: 138=2000 ¼ 0:069, or 6.9%.

Both cumulative incidence and prevalence are usually expressed as a percentage

or, when small, as per 1000 population or per 10 000 or 100 000 population. In

Chapter 22 we define the incidence rate, the measure used in longitudinal studies

with variable lengths of follow up.
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16.1 INTRODUCTION

In Chapter 15 we saw how the sampling distribution of a proportion can be

approximated by the normal distribution to give a confidence interval and z-test

for a single proportion. In this chapter we deal with the more common situation

where we wish to compare the occurrence of a binary outcome variable between

two exposure (or treatment) groups. We will use the same notation for these two

groups as was introduced in Chapter 7 for the comparison of two means. Group

1 denotes individuals exposed to a risk factor, and group 0 denotes those unex-

posed. In clinical trials, group 1 denotes the treatment group, and group 0 the

control, or placebo group (a placebo is a preparation made to be as similar as

possible to the treatment in all respects, but with no effective action). For example,

� In a study of the effects of bacterial infection during pregnancy, we may wish to

compare the risk of premature delivery for babies born to women infected

during the first trimester (the exposed group, 1) with that for babies born to

uninfected women (the unexposed group, 0).

� In a trial of a new influenza vaccine, the comparison of interest might be the

proportion of participants who succumbed to influenza during the winter

season in the vaccine group (the treatment group, 1), compared to the propor-

tion in the placebo group (the control group, 0).

We start by showing how the data can be displayed in a 2� 2 table, with individ-

uals in the sample classified according to whether they experienced the disease

outcome (or not), and according to whether they were exposed (or not). We then
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explain three different measures for comparing the outcome between the two

groups: the difference in the two proportions, the risk ratio and the odds ratio.

We describe how to calculate a confidence interval and carry out a hypothesis test

for each of them, and outline their relative advantages and disadvantages.

16.2 THE 2� 2 TABLE, AND MEASURES OF EXPOSURE EFFECT

In Section 3.4, we described how the relationship between two categorical vari-

ables can be examined by cross-tabulating them in a contingency table. We noted

that a useful convention is for the rows of the table to correspond to the exposure

values and the columns to the outcomes. To compare the occurrence of a binary

outcome variable between two exposure groups, we therefore display the data in a

2� 2 table. Table 16.1 shows the notation that we will use for the number of

individuals in each group. As introduced in the last chapter, we use letter d to

denote the number of subjects who experience the outcome event, h to denote the

number of subjects who do not experience the outcome event, and n for the total

number in the sample. In addition, we use the subscripts 1 and 0 to denote the

exposed and unexposed groups respectively.

As explained in Section 3.4, it is recommended that the table also shows the

proportion (or percentage) in each outcome category, within each of the exposure

groups. Thus, if the exposure is the row variable (as here) then row percent-

ages should be presented, while if it is the column variable then column percent-

ages should be presented. Following the notation introduced in Chapter 15, the

overall proportion is denoted by p ¼ d=n, and the proportions in the exposed and

unexposed groups are denoted by p1 ¼ d1=n1 and p0 ¼ d0=n0, respectively.

Example 16.1

Consider the following results from an influenza vaccine trial carried out during

an epidemic. Of 460 adults who took part, 240 received influenza vaccination and

220 placebo vaccination. Overall 100 people contracted influenza, of whom 20

were in the vaccine group and 80 in the placebo group. We start by displaying the

results of the trial in a 2� 2 table (Table 16.2). In Table 16.2 the exposure is

vaccination (the row variable) and the outcome is whether the subject contracts

influenza (the column variable). We therefore also include row percentages in the

Table 16.1 Notation to denote the number of individuals in each group for the 2� 2

table comparing a binary outcome variable between two exposure groups.

Outcome

Exposure

Experienced event:

D (Disease)

Did not experience event:

H (Healthy) Total

Group 1 (exposed) d1 h1 n1
Group 0 (unexposed) d0 h0 n0

Total d h n
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Table 16.2 2� 2 table showing results from an influenza vaccine trial.

Influenza

Yes No Total

Vaccine 20 (8.3%) 220 (91.7%) 240

Placebo 80 (36.4%) 140 (63.6%) 220

Total 100 (21.7%) 360 (78.3%) 460

table. Overall, 21.7% of subjects contracted influenza. We can see that the per-

centage contracting influenza was much lower in the vaccine group (8.3%), than in

the placebo group (36.4%). We can use these data to answer the following related

questions.

1 How effective was the vaccine in preventing influenza in our trial? The size of

this effect can be measured in three different ways:

(a) The difference between the risks of contracting influenza in the vaccine

group compared to the placebo group.

(b) The ratio of the risks of contracting influenza in the vaccine group com-

pared to the placebo group. This is also known as the relative risk.

(c) The ratio of the odds of contracting (to not contracting) influenza in the

vaccine group, compared to the placebo group.

2 What does the effect of the vaccine in our trial tell us about the size of its effect

in preventing influenza more generally in the population? This is addressed by

calculating a confidence interval for the size of the effect.

3 Do the data provide evidence that the vaccine actually affects the risk of

contracting influenza, or might the observed difference between the two groups

have arisen by chance? In other words, are the data consistent with there being

no effect of the vaccine? We address this by carrying out a hypothesis (or

significance) test to give a P-value, which is the probability of a difference

between the two groups at least as large as that in our sample, if there was no

effect of the vaccine in the population.

The use of confidence intervals and P-values to interpret the results of statistical

analyses is discussed in detail in Chapter 8, and readers may wish to refer to that

chapter at this point.

The three different measures for comparing a binary outcome between two

exposure (or treatment) groups are summarized in Table 16.3, together with the

results for the influenza vaccine trial. All three measures indicate a benefit of the

vaccine. The risk difference is �0:281, meaning that the absolute risk of contract-

ing influenza was 0.281 lower in the vaccine group compared to the placebo group.

The risk ratio equals 0.228, meaning that the risk of contracting influenza in the

vaccine group was only 22.8% of the risk in the placebo group. Equivalently, we

could say the vaccine prevented 77.2% (100� 22:8%) of influenza cases. This is

called the vaccine efficacy; it is discussed in more detail in Chapter 37. The odds
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Table 16.3 Three different measures for comparing a binary outcome between two exposure (or

treatment) groups, together with the results for the vaccine trial data in Table 16.2.

Measure of comparison Formula Result for influenza vaccine trial

Risk difference p1 � p0 0:083� 0:364 ¼ �0:281

Risk ratio (relative risk) p1=p0 0:083=0:364 ¼ 0:228

Odds ratio
d1=h1
d0=h0

¼ d1 � h0
d0 � h1

20=220

80=140
¼ 20� 140

80� 220
¼ 0:159

ratio in the trial was 0.292 meaning that the odds of contracting influenza in the

vaccine group were 29.2% of the odds in the placebo group.

The following sections describe how to calculate confidence intervals and carry

out hypothesis tests for each of these three measures. They also discuss their

relative advantages and disadvantages. When to use which measure is also dis-

cussed in Chapter 37 (‘Measures of association and impact’).

16.3 RISK DIFFERENCES

We will start with the first of the three measures of effect, the difference between

the two proportions. From now on we will refer to this as a risk difference, though

the methods apply to any type of proportion. We will see how to derive a

confidence interval for the difference, and carry out a test of the null hypothesis

that there is no difference between the proportions in the population from which

the sample was drawn. As in the case of a single proportion we will use methods

based on the normal approximation to the sampling distribution of the two

proportions. These will be illustrated in the context of the influenza vaccine trial

described in Example 16.1 above.

Sampling distribution of the difference between two proportions

Before we can construct a confidence interval for the difference between two

proportions, or carry out the related hypothesis test, we need to know the sampling

distribution of the difference. The difference, p1 � p0, between the proportions in

the exposed and unexposed groups in our sample provides an estimate of the

underlying difference, �1 � �0, between the exposed and unexposed groups in the

population. It is of course subject to sampling variation, so that a different sample

from the same population would give a different value of p1 � p0. Note that:

1 The normal distribution is a reasonable approximation to the sampling distri-

bution of the difference p1 � p0, provided n1p1, n1 � n1p1, n0p0 and n0 � n0p0

are each greater than 10, and will improve as these numbers get larger.

2 The mean of this sampling distribution is simply the difference between the two

population means, �1 � �0.

3 The standard error of p1 � p0 is based on a combination of the standard errors

of the individual proportions:

16.3 Risk differences 151



s:e:( p1 � p0) ¼ ½ p1(1� p1)=n1 þ p0(1� p0)=n0� ¼ ½s:e:( p1)2 þ s:e:( p0)
2�

pq

The confidence interval for the difference between two proportions is given by:

CI ¼ ( p1 � p0)� z0�s:e:( p1 � p0) to ( p1 � p0)þ z0�s:e:( p1 � p0)

where z0 is the appropriate percentage point of the normal distribution.

Example 16.1 (continued)

The difference in proportions between the vaccine and placebo groups is 0:083�
0:364 ¼ �0:281. Its standard error is:

s:e:( p1 � p0) ¼ 0:083(1� 0:083)=240þ 0:364(1� 0:364)=220½ �p ¼ 0:037

and so the approximate 95% confidence interval for this reduction is:

95% CI ¼ �0:281� (1:96� 0:037) to � 0:281þ (1:96� 0:037)

¼ �0:353 to � 0:208

That is, we are 95% confident that in the population the vaccine would reduce the

risk of contracting influenza by between 0.208 and 0.353.

Test that the difference between two proportions is zero

The normal test to compare two sample proportions is based on:

z ¼ p1 � p0

s:e:( p1 � p0)

The standard error used in the test is different to that used in the confidence interval

because it is calculated assuming that the null hypothesis is true (i.e. that

�1 ¼ �0 ¼ �). Under the null hypothesis that the population proportions are equal:

s:e:( p1 � p0) ¼ [�(1� �)(1=n1 þ 1=n0)]
p

� is estimated by the overall proportion in both samples, that is by:

p ¼ d0 þ d1

n0 þ n1
¼ d

n
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The formula for the z-test is therefore:

z ¼ p1 � p0

[ p(1� p)(1=n1 þ 1=n0)]
p

This test is a valid approximation provided that either n1 þ n0 is greater than 40 or

n1p, n1 � n1p, n2p and n2 � n2p are all 10 or more. If this condition is not satisfied,

but n1p, n1 � n1p, n2p and n2 � n2p are all 5 ormore, then amodified version of the

z-test incorporating a continuity correction, or the equivalent chi-squared test with a

continuity correction, can be used (see Section 17.2). If none of these conditions are

satisfied, the exact test described in Section 17.3 should be used.

Example 16.1 (continued)

The overall proportion that contracted influenza was 0.217 or 21.7%. Therefore:

z ¼ (0:083� 0:364)

0:217(1� 0:217)(1=240þ 1=220)½ �p ¼ �0:281

0:0385
¼ �7:299

The corresponding P-value is < 0:0001. Thus there is strong evidence that there

was a reduction in the risk of contracting influenza following vaccination with the

influenza vaccine.

16.4 RISK RATIOS

We now turn to the second measure of effect introduced in Section 16.2, the

ratio of the two proportions. We will refer to this as the risk ratio, although

the methods apply to ratios of any proportions, and not just those that estimate

risks. The risk ratio is often abbreviated to RR, and is also known as the relative

risk.

RR ¼ p1

p0
¼ d1=n1

d0=n0

Example 16.2

Table 16.4 shows hypothetical data from a study to investigate the association

between smoking and lung cancer. 30 000 smokers and 60 000 non-smokers

were followed for a year, during which time 39 of the smokers and 6 of the

non-smokers developed lung cancer, giving risks of 0.13% and 0.01% respectively.

Thus the risk of lung cancer was considerably higher among smokers than non-

smokers.
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Table 16.4 Hypothetical data from a cohort study to investigate the association between smoking and lung cancer.

The calculations of risk ratio (RR) and risk difference are illustrated.

Lung cancer No lung cancer Total Risk

Smokers

(exposed)

39 29 961 30 000 p1 � 39=30 000 ¼ 0:0013 (0:13%)

Non-smokers

(unexposed)

6 59 994 60 000 p0 � 6=60 000 ¼ 0:0001 (0.01%)

Total 45 89 955 90 000

Risk difference ¼ 0:13%�0:01% ¼ 0:12%

Risk ratio ¼ 0:0013=0:0001 ¼ 13

The risk ratio is:

RR ¼ p1

p0
¼ 0:0013

0:0001
¼ 13

Interpreting the risk ratio

In an epidemiological study, comparing an exposed group with an unexposed, the

risk ratio is a good indicator of the strength of the association between the

exposure and the disease outcome. It equals:

Risk ratio (RR) ¼ risk in exposed group

risk in unexposed group

In a clinical trial to assess the impact of a new treatment, procedure or preventive

intervention on disease outcome or occurrence, the risk ratio equals:

Risk ratio (RR) ¼ risk in treatment group

risk in control group

A risk ratio of 1 occurs when the risks are the same in the two groups and is

equivalent to no association between the risk factor and the disease. A risk ratio

greater than 1 occurs when the risk of the outcome is higher among those exposed

to the factor (or treatment) than among the non-exposed, as in Example 16.2

above, with exposed referring to smoking. A risk ratio less than 1 occurs when the

risk is lower among those exposed, suggesting that the factor (or treatment) may

be protective. An example is the reduced risk of infant death observed among

infants that are breast-fed compared to those that are not. The further the risk

ratio is from 1, the stronger the association between exposure (or treatment) and

outcome. Note that a risk ratio is always a positive number.

Relationship between risk ratios and risk differences

The risk ratio is more commonly used to measure of the strength of an association

than is the difference in risks. This is because the amount by which an exposure
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(risk factor) multiplies the risk of an event is interpretable regardless of the size of

the risk. For example, suppose we followed the population in Example 16.2 above

for two years instead of one, and therefore observed exactly double the number

of events in each group (here we are ignoring the small number of individuals lost

to follow-up because they died in the first year). The risks are now 0.26% in

smokers and 0.02% in non-smokers. The risk ratio is 0.26/0.02¼ 13; exactly

as before. However, the risk difference is now 0:26� 0:02% ¼ 0:24%, double

that observed when there was only one year’s follow-up. The use and interpret-

ation of ratio and difference measures of the size of exposure effects is discussed in

Chapter 37.

16.5 RISK RATIOS: CONFIDENCE INTERVALS AND HYPOTHESIS

TESTS

Standard error and confidence interval for ratio measures

Until now, we have followed exactly the same procedure whenever we wish to

calculate a confidence interval. We derive the standard error (s.e.) of the quantity,

q, in which we are interested, and determine the multiplier za corresponding to the

appropriate percentage point of the sampling distribution:

CI ¼ q� za � s:e: to qþ za � s:e

When the sampling distribution is normal, za is 1.96 for a 95% confidence interval

and:

95% CI ¼ q� 1:96� s:e: to qþ 1:96� s:e:

For ratio measures such as risk ratios, this can lead to problems when the

standard error is large and q is close to zero, because the lower limit of

the confidence interval may come out negative despite the fact that the risk ratio

is always positive. To overcome this problem, we adopt the following proced-

ure:

1 Calculate the logarithm of the risk ratio, and its standard error. The formula for

this standard error is derived using the delta method (see Box 16.1), and is:

s:e:( logRR) ¼ [1=d1 � 1=n1 þ 1=d0 � 1=n0]
p

Note that s.e.(log RR) should be interpreted as ‘standard error of the log RR’,

and that throughout this book, all logs are to the base e (natural logarithms)

unless explicitly denoted by log10 as being logs to the base 10. See Section 13.1

for an explanation of logarithms and the exponential function.

2 Derive a confidence interval for the log risk ratio in the usual way:
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95% CI ( logRR)¼ logRR�1:96�s:e:( logRR) to logRRþ1:96�s:e:( logRR)

3 Antilog the confidence limits obtained, to convert this into a confidence interval

for the risk ratio.

95% CI (RR) ¼
exp[ logRR� 1:96� s:e:( logRR)] to exp[ logRRþ 1:96� s:e:( logRR)]

4 Use the rules of logarithms and antilogs to make this simpler. The rules are:

Rules of logarithms:

log(a)þ log(b) ¼ log(a� b)

log(a)� log(b) ¼ log(a=b)

Rules of antilogs:

exp(a) means ea; it is the antilog (exponential) function

exp[ log (a)] ¼ a

exp(aþ b) ¼ exp(a)� exp(b)

exp(a� b) ¼ exp(a)= exp(b)

Following these rules, and noting that exp(logRR)¼RR, gives:

95% CI (RR) ¼ RR=exp[1:96� s:e:( logRR)] to RR� exp[1:96� s:e:( logRR)]

The quantity exp[1.96� s.e. (logRR)] is known as an error factor (EF); it is always

greater than 1, because exp(x) is greater than 1 if x is greater than zero. The 95%

confidence interval can therefore be written more simply as:

95% CI (RR) ¼ RR=EF to RR� EF

Putting all of this together, the formula for the 95% confidence interval for the risk

ratio is:

95% CI (RR)¼ RR=EF to RR� EF,

where EF¼ exp[1:96� s:e:( logRR)]

and s:e:( logRR) ¼ [1=d1 � 1=n1 þ 1=d0 � 1=n0]
p
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BOX 16.1 DERIVATION OF THE FORMULA FOR THE STANDARD

ERROR OF THE LOG(RISK RATIO)

This box is intended for those who wish to understand the mathematics behind the

approximate formula for the standard error of the log (risk ratio) used in step 1 of

the procedure described in Section 16.5, for calculating a confidence interval for the

risk ratio.

The formula was derived using the delta method. This is a technique for calculating

the standard error of a transformed variable from the mean and standard error of the

original untransformed variable. In this Box, we briefly outline how this method is

used to give (a) an approximate formula for the standard error of a log transformed

variable, and in particular (b) the formula for the standard error of a log transformed

proportion. We then show how this result can be used to derive (c) an approximate

formula for the standard error of the log(risk ratio).

(a) Deriving the formula for the standard error of a log transformed

variable:
The delta method uses a mathematical technique known as a Taylor series expansion

to show that:
log(X) ’ log(�)þ (X� �)( log0(�))

where log0 (�) denotes the first derivative of log(�), the slope of the graph of log(�)

against �. This approximation works provided that the variance of variable X is small

compared to its mean.

As noted in Section 4.3, adding or subtracting a constant to a variable leaves its

standard deviation (and variance) unaffected, and multiplying by a constant has the

effect of multiplying the standard deviation by that constant (or equivalently multi-

plying the variance by the square of the constant). By applying these in the formula

above, and further noting that log0(�) ¼ 1=�, we can deduce that

s:e:( log(X)) ’ s:e:(X)� log0(�) ¼ s:e:(X)=�

(b) Formula for the standard error of the log(proportion):

Recall from Section 15.3 that the mean of the sampling distribution for a proportion

is estimated by p ¼ d=n and the standard error by [p(1� p)=n]
p

. Therefore:

s:e:( log p) ’ [p(1� p)=n
p

]

d=n
¼ [1=d � 1=n]

p

(c) Formula for the standard error of the log(risk ratio):

Risk ratio (RR) ¼ p1

p0

Using the rules of logarithms given above the log risk ratio is given by:

logRR ¼ log( p1)� log ( p0)

Since the standard error of the difference between two variables is the square root of

the sum of their variances (see Section 7.2), it follows that the standard error of

logRR is given by:

s:e:( logRR) ¼ [var( log
p

( p1)þ var( log( p0)] ¼ [1=d1 � 1=n1 þ 1=d0 � 1=n0]
p
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Example 16.2 (continued)

Consider the data presented in Table 16.4, showing a risk ratio of 13 for the

association between smoking and risk of lung cancer. The standard error of the

logRR is given by:

s:e:( logRR) ¼ [(1=39� 1=30000 þ 1=6� 1=60000)]
p ¼ 0:438

The error factor is given by:

EF ¼ exp(1:96� 0:438) ¼ 2:362

The 95% confidence interval for the risk ratio is therefore:

95% CI ¼ (13=2:362 to 13� 2:362) ¼ 5:5 to 30:7

Test of the null hypothesis

If the null hypothesis of no difference between the risks in the two groups is true,

then the RR ¼ 1 and hence logRR¼ 0. We use the logRR and its standard error

to derive a z statistic and test the null hypothesis in the usual way:

z ¼ logRR

s:e:( logRR)

Example 16.2 (continued)

In the smoking and lung cancer example,

z ¼ 2:565=0:438 ¼ 5:85

This corresponds to a P-value of < 0:0001. There is therefore strong evidence

against the null hypothesis that the RR ¼ 1.

Further analyses of risk ratios

The risk ratio is a measure that is easy to interpret, and the analyses based on risk

ratios described in this chapter are straightforward. Perhaps surprisingly, how-

ever, more complicated analyses of associations between exposures and binary

outcomes are rarely based on risk ratios. It is much more common for these to be

based on odds ratios, as discussed in the next section, and used throughout
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Chapters 17 to 21. In Section 20.4, we briefly describe how to conduct regression

analyses based on risk ratios, rather than odds ratios, and why this is not usually

the preferred method.

16.6 ODDS RATIOS

We now turn to the third and final measure of effect introduced in Section 16.2,

the ratio of the odds of the outcome event in the exposed group compared to the

odds in the unexposed group (or in the case of a clinical trial, in the treatment

group compared to the control group). Recall from Section 14.6 that the odds of

an outcome event D are defined as:

Odds ¼ prob(D happens)

prob(D does not happen)
¼ prob(D)

1� prob(D)

The odds are estimated by:

Odds ¼ p

1� p
¼ d=n

(1� d=n)
¼ d=n

h=n
¼ d

h

i.e. by the number of individuals who experience the event divided by the number

who do not experience the event. The odds ratio (often abbreviated to OR) is

estimated by:

OR ¼ odds in exposed group

odds in unexposed group
¼ d1=h1

d0=h0
¼ d1 � h0

d0 � h1

It is also known as the cross-product ratio of the 2� 2 table.

Example 16.3

Example 15.5 introduced a survey of 2000 patients aged 15 to 50 registered with a

particular general practice, which showed that 138 (6.9%) were being treated for

asthma. Table 16.5 shows the number diagnosed with asthma according to their

gender. Both the prevalence (proportion with asthma) and odds of asthma in

women and men are shown, as are their ratios.

The odds ratio of 1.238 indicates that asthma is more common among women

than men. In this example the odds ratio is close to the ratio of the prevalences;

this is because the prevalence of asthma is low (6% to 8%). Properties of odds

ratios are summarized in Box 16.2.
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Table 16.5 Hypothetical data from a survey to examine the prevalence of asthma among patients at a particular

general practice.

Asthma No asthma Total Prevalence Odds

Women 81 995 1076 0.0753 0.0814

Men 57 867 924 0.0617 0.0657

Total 138 1862 2000
RR ¼ 0:0753

0:0617
¼ 1:220 OR ¼ 0:0814

0:0657
¼ 1:238

BOX 16.2 PROPERTIES OF ODDS RATIOS

The minimum possible value is zero, and the maximum possible value is

infinity.

� An odds ratio of 1 occurs when the odds, and hence the proportions, are

the same in the two groups and is equivalent to no association between the

exposure and the disease.

� The odds ratio is always further away from 1 than the corresponding risk

(or prevalence) ratio. Thus:

if RR > 1 then OR > RR

if RR < 1 then OR < RR

� For a rare outcome (one in which the probability of the event not

occurring is close to 1) the odds ratio is approximately equal to the risk

ratio (since the odds are approximately equal to the risk, see Section 14.6).

� The odds ratio for the occurrence of disease is the reciprocal of the odds

ratio for non-occurrence.

� The odds ratio for exposure, that is the odds of disease in the exposed

compared to the odds in the unexposed group, equals the odds ratio for

disease, that is the odds of exposure in the disease compared to the odds in

the healthy group. (This equivalence is fundamental for the analysis of

case- control studies.)

Comparison of odds ratios and risk ratios

As mentioned in Section 16.2, both the risk difference and the risk ratio have

immediate intuitive interpretations. It is relatively easy to explain that, for

example, moderate smokers have twice the risk of cardiovascular disease than

non-smokers (RR ¼ 2). In contrast, interpretation of odds ratios often causes

problems; except for gamblers, who tend to be extremely familiar with the mean-

ing of odds (see Chapter 14).
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Table 16.6 Values of the risk ratio when the odds ratio¼ 2, and the odds ratio when the risk ratio¼ 2, given

different values of the risk in the unexposed group.

Odds ratio ¼ 2 Risk ratio ¼ 2

Risk in the

unexposed group

Corresponding

risk ratio

Risk in the

unexposed group

Corresponding

odds ratio

0.001 1.998 0.001 2.002

0.005 1.99 0.005 2.010

0.01 1.980 0.01 2.020

0.05 1.905 0.05 2.111

0.1 1.818 0.1 2.25

0.5 1.333 0.3 3.5

0.9 1.053 0.4 6.0

0.95 1.026 0.45 11.0

0.99 1.005 0.5* 1

*When �0 is greater than 0.5, the risk ratio must be less than 2, since �1 ¼ RR� �0, and probabilities

cannot exceed 1.

A common mistake in the literature is to interpret an odds ratio as if it

were a risk ratio. For rare outcomes, this is not a problem since the two are

numerically equal (see Box 16.2 and Table 16.6). However, for common

outcomes, this is not the case; the interpretation of odds ratios diverges

from that for risk ratios. Table 16.6 shows values of the risk ratio for an odds

ratio of 2, and conversely the values of the odds ratio for a risk ratio of 2, for

different values of the risk in the unexposed group. For example, it shows that

if the risk in the exposed group is 0.5, then an odds ratio of 2 is equivalent to a

risk ratio of 1.33. When the outcome is common, therefore, an odds ratio of

(for example) 2 or 5 must not be interpreted as meaning that the risk is multiplied

by 2 or 5.

As the risk in the unexposed group becomes larger, the maximum possible value

of the risk ratio becomes constrained, because the maximum possible value for a

risk is 1. For example, if the risk in the unexposed group is 0.33, the maximum

possible value of the RR is 3. Because there is no upper limit for the odds, the OR

is not constrained in this manner. Note that as the risk in the unexposed group

increases the odds ratio becomes much larger than the risk ratio and, as explained

above, should no longer be interpreted as the amount by which the risk factor

multiplies the risk of the disease outcome.

The constraint on the value of the risk ratio can cause problems for statistical

analyses using risk ratios when the outcome is not rare, because it can mean

that the risk ratio differs between population strata. For example, in a low-risk

stratum the risk of disease might be 0.2 (20%) in the unexposed group and 0.5

(50%) in the exposed group. The risk ratio in that stratum is therefore

0:5=0:2 ¼ 2:5. If the risk of disease in a high-risk stratum is 0.5 then the risk
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ratio can be at most 2 in that stratum, since the maximum possible risk of disease

is 1, and 1=0:5 ¼ 2.

A further difficulty with risk ratios is that the interpretation of results may

depend on whether the occurrence of an event, or its non-occurrence, is considered

as the outcome. For odds ratios this presents no problems, since:

OR(disease) ¼ 1=OR( healthy)

However no such relationship exists for risk ratios. For instance, consider

the low-risk stratum in which the risk ratio is 0:5=0:2 ¼ 2:5. If the non-

occurrence of disease (healthy) is considered as the outcome, then the

risk ratio is (1� 0:5)=(1� 0:2) ¼ 0:5=0:8 ¼ 0:625. This is not the same as

1=2:5 ¼ 0:4.

Example 16.4

Consider a study in which we monitor the risk of severe nausea during chemo-

therapy for breast cancer. A new drug is compared with standard treatment. The

hypothetical results are shown in Table 16.7.

The risk of severe nausea is 88% in the group treated with the new drug

and 71% in the group given standard treatment, so the risk ratio is

0:88=0:71 ¼ 1:239, an apparently moderate increase in the prevalence of

nausea. In contrast the odds ratio is 2.995, a much more dramatic increase.

Note, however, that the risk ratio is constrained: it cannot be greater than

1=0:71 ¼ 1:408.

Suppose now that we consider our outcome to be absence of nausea. The risk

ratio is 0:12=0:29 ¼ 0:414: the proportion of patients without severe nausea has

more than halved. The odds ratio is 0.334: exactly the inverse of the odds ratio for

nausea (1=2:995 ¼ 0:334).

Table 16.7 Risk of severe nausea following chemotherapy for breast cancer.

Number with

severe nausea

Number without

severe nausea Total

New drug 88 (88%) 12 100

Standard treatment 71 (71%) 29 100

Rationale for the use of odds ratios

In the recent medical literature, the statistical analysis of binary outcomes

is almost always based on odds ratios, even though they are less easy to

interpret than risk ratios (or risk differences). This is for the following three

reasons:
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1 When the outcome is rare, the odds ratio is the same as the risk ratio. This is

because the odds of occurrence of a rare outcome are numerically equivalent to

its risk. Analyses based on odds ratios therefore give the same results as analyses

based on risk ratios.

2 When the outcome is common, risk ratios are constrained but odds ratios are not.

Analyses based on risk ratios, particularly those examining the effects of more

than one exposure variable, can cause computational problems and are difficult

to interpret. In contrast, these problems do not occur in analyses based on odds

ratios.

3 For odds ratios, the conclusions are identical whether we consider our outcome

as the occurrence of an event, or the absence of the event.

Taken together, these mean that analyses of binary outcomes controlling for

possible confounding (see Chapter 18), or which use regression modelling (see

Chapters 19 to 21), usually report exposure effects as odds ratios, regardless of

whether the outcome is rare or common.

In addition, odds ratios are the measure of choice in case–control studies. In

fact, it is in this context that they were first developed and used. In case–control

studies we recruit a group of people with the disease of interest (cases) and a

random sample of people without the disease (the controls). The distribution of

one or more exposures in the cases is then compared with the distribution in the

controls. Because the controls usually represent an unknown fraction of the whole

population, it is not possible to estimate the risk of disease in a case–control study,

and so risk differences and risk ratios cannot be derived. The odds ratio can be

used to compare cases and controls because the ratio of the odds of exposure

(d1=d0) among the diseased group compared to the odds of exposure among the

healthy group (h1=h0), is equivalent to the ratio of the odds of disease in exposed

compared to unexposed:

OR ¼ d1=h1
d0=h0

¼ d1 � h0

d0 � h1
¼ d1=d0

h1=h0

16.7 ODDS RATIOS: CONFIDENCE INTERVALS AND HYPOTHESIS

TESTS

Confidence interval for the odds and the odds ratio

We saw in Section 16.5 how a confidence interval for the risk ratio is derived by

calculating a confidence interval for the log risk ratio and then converting this to a

confidence interval for the risk ratio. Confidence intervals for the odds, and the

odds ratio, are calculated in exactly the same way. The results are shown in Table

16.8. Note that s.e.(logOR) should be interpreted as ‘s.e. of the log OR’. The

formula for s.e.(logOR) is also known as Woolf ’s formula.
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Table 16.8 Formulae for calculation of 95% confidence intervals for the odds and the odds ratio.

Odds Odds ratio (OR)

95% CI ¼ odds=EF to odds� EF, 95% CI ¼ OR=EF to OR� EF,

where EF ¼ exp [1:96� s:e:( log odds)] where EF ¼ exp[1:96� s:e:( log OR)]

and s:e:( log odds) ¼ [1=d þ 1=h]
p

and s:e:( log OR) ¼ [1=d1 þ 1=h1 þ 1=d0 þ 1=h0]
p

Example 16.3 (continued)

Consider the data from the asthma survey presented in Table 16.5. The standard

error of the logOR is given by:

s:e:( logOR) ¼ [1=57þ 1=867þ 1=81þ 1=995]
p ¼ 0:179

The error factor is given by:

EF ¼ exp(1:96� 0:179) ¼ 1:420

The 95% confidence interval for the odds ratio is therefore:

95% CI ¼ 1:238=1:420 to 1:238� 1:420 ¼ 0:872 to 1:759

With 95% confidence, the odds ratio in the population lies between 0.872 and

1.759.

Test of the null hypothesis

We use the logOR and its standard error to derive a z statistic and test the null

hypothesis in the usual way:

z ¼ log OR

s:e:( logOR)

The results are identical to those produced by simple logistic regression models

(see Chapter 19).

Example 16.3 (continued)

The z statistic is given by z ¼ 0:214=0:179 ¼ 1:194. This corresponds to a P-value

of 0.232. There is no clear evidence against the null hypothesis that the OR ¼ 1,

i.e. that the prevalence of asthma is the same in men and women.
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17.1 INTRODUCTION

We saw in the last chapter that when both exposure and outcome variables have

only two possible values (binary variables) the data can be displayed in a 232

table. As described in Section 3.4, contingency tables can also be used to display

the association between two categorical variables, one or both of which has more

than two possible values. The categories for one variable define the rows, and the

categories for the other variable define the columns. Individuals are assigned to

the appropriate cell of the contingency table according to their values for the two

variables. A contingency table is also used for discrete numerical variables, or for

continuous numerical variables whose values have been grouped. These larger

tables are generally called r� c tables, where r denotes the number of rows in the

table and c the number of columns. If the variables displayed are an exposure and

an outcome, then it is usual to arrange the table with exposure as the row variable

and outcome as the column variable, and to display percentages corresponding to

the exposure variable.

In this chapter, we describe how to use a chi-squared (x2) test to examine

whether there is an association between the row variable and the column variable

or, in other words, whether the distribution of individuals among the categories of

one variable is independent of their distribution among the categories of the other.

We explain this for 2� 2 tables, and for larger r� c tables. When the table has

only two rows and two columns the x2 test is equivalent to the z-test for the

difference between two proportions. We also describe the exact test for a 2� 2

table when the sample size is too small for the z-test or the x2 test to be valid.

Finally, we describe the use of a x2 test for trend, for the special case where we

have a binary outcome variable and several exposure categories, which have a

natural order.

CHAPTER 17

Chi-squared tests for 2�� 2 and larger
contingency tables
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ence between two proportions

Continuity correction

Validity
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17.5 Ordered exposures: x2 test for
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17.2 CHI-SQUARED TEST FOR A 2���2 TABLE

Example 17.1

Table 17.1 shows the data from the influenza vaccination trial described in the last

chapter (see Example 16.1). Since the exposure is vaccination (the row variable),

the table includes row percentages. We now wish to assess the strength of the

evidence that vaccination affected the probability of contracting influenza.

Table 17.1 2� 2 table showing results from an influenza vaccine trial.

(a) Observed numbers.

Influenza

Yes No Total

Vaccine 20 (8.3%) 220 (91.7%) 240

Placebo 80 (36.4%) 140 (63.6%) 220

Total 100 (21.7%) 360 (78.3%) 460

(b) Expected numbers.

Influenza

Yes No Total

Vaccine 52.2 187.8 240

Placebo 47.8 172.2 220

Total 100 360 460

The chi-squared test compares the observed numbers in each of the four categ-

ories in the contingency table with the numbers to be expected if there were no

difference in efficacy between the vaccine and placebo. Overall 100/460 people

contracted influenza and, if the vaccine and the placebo were equally effective, one

would expect this same proportion in each of the two groups; that is

100=460� 240 ¼ 52:2 in the vaccine group and 100=460� 220 ¼ 47:8 in the pla-

cebo group would have contracted influenza. Similarly 360=460� 240 ¼ 187:8

and 360=460� 220 ¼ 172:2 would have escaped influenza. These expected

numbers are shown in Table 17.1(b). They add up to the same row and column

totals as the observed numbers. The chi-squared value is obtained by calculating

(observed� expected)2=expected

for each of the four cells in the contingency table and then summing them.

�2 ¼ �
(O� E)2

E
, d:f : ¼ 1 for a 2� 2 table
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This is exactly the same formula as was given for the chi-squared goodness of fit

test, which was described in Chapter 12. The greater the differences between the

observed and expected numbers, the larger the value of x2. The percentage points

of the chi-squared distribution are given in Table A5 in the Appendix. The values

depend on the degrees of freedom, which equal 1 for a 2� 2 table (the number of

rows minus 1 multiplied by the number of columns minus 1). In this example:

�2 ¼ (20� 52:2)2

52:2
þ (80� 47:8)2

47:8
þ (220� 187:8)2

187:8
þ (140� 172:2)2

172:2

¼ 19:86þ 21:69þ 5:52þ 6:02 ¼ 53:09

53.09 is greater than 10.83, the 0.1% point for the chi-squared distribution with

1 degree of freedom so that the P-value for the test is < 0:001. This means that the

probability is less than 0.001, or 0.1%, that such a large observed difference in the

percentages contracting influenza could have arisen by chance, if there was no real

difference between the vaccine and the placebo. Thus there is strong evidence

against the null hypothesis of no effect of the vaccine on the probability of

contracting influenza. It is therefore concluded that the vaccine is effective.

Quick formula

Using our standard notation for a 2� 2 table (see Table 16.1), a quicker formula

for calculating chi-squared on a 2� 2 table is:

�2 ¼ n(d1h0 � d0h1)
2

dhn1n0
, d:f : ¼ 1

In the example,

x2 ¼ 460� (20� 140� 80� 220)2

100� 360� 240� 220
¼ 53:01

which, apart from rounding error, is the same as the value of 53.09 obtained above.

Relation with normal test for the difference between two proportions

The square of the z statistic (normal test) for the difference between two propor-

tions and the chi-squared statistic for a 2� 2 contingency table are in fact

mathematically equivalent (x2 ¼ z2), and the P-values from the two tests are

identical. In Example 16.1 (Section 16.3) the z-test gave a value of �7.281 for

the influenza vaccine data; z2 ¼ (� 7:281)2 ¼ 53:01 which, apart from rounding

error, is the same as the x2 value of 53.09 calculated above.
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We will show below that the chi-squared test can be extended to larger contin-

gency tables. Note that the percentage points given in Table A5 for a chi-squared

distribution with 1 degree of freedom correspond to the two-sided percentage

points presented in Table A2 for the standard normal distribution (see Appendix).

(The concepts of one- and two-sided tests do not extend to chi-squared tests with

larger degrees of freedom as these contain multiple comparisons.)

Continuity correction

The chi-squared test for a 2� 2 table can be improved by using a continuity

correction, often called Yates’ continuity correction. The formula becomes:

�2 ¼ �
(jO� Ej � 0:5)2

E
, d:f : ¼ 1

resulting in a smaller value for x2. jO� Ej means the absolute value of O� E or,

in other words, the value of O� E ignoring its sign.

In the example the value for x2 becomes:

�2 ¼ (32:2� 0:5)2

52:2
þ (32:2� 0:5)2

47:8
þ (32:2� 0:5)2

187:8
þ (32:2� 0:5)2

172:2

¼ 19:25þ 21:02þ 5:35þ 5:84 ¼ 51:46,P < 0:001

compared to the uncorrected value of 53.09.

The rationale of the continuity correction is explained in Figure 15.3, where the

normal and binomial distributions are superimposed. It makes little difference

unless the total sample size is less than 40, or the expected numbers are small.

However there is no analogue of the continuity correction for the Mantel–Haens-

zel and regression analyses described later in this part of the book. When the

expected numbers are very small, then the exact test described in Section 17.3

should be used; see discussion on validity below.

Validity

When the expected numbers are very small the chi-squared test (and the equivalent

z-test) is not a good enough approximation and the alternative exact test for a

2� 2 table should be used (see Section 17.3). Cochran (1954) recommended the

use of the exact test when:

1 the overall total of the table is less than 20, or

2 the overall total is between 20 and 40 and the smallest of the four expected

numbers is less than 5.
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Thus the chi-squared test is valid when the overall total is more than 40, regardless

of the expected values, and when the overall total is between 20 and 40 provided

all the expected values are at least 5.

17.3 EXACT TEST FOR 2��2 TABLES

The exact test to compare two proportions is needed when the numbers in the

2� 2 table are very small; see the discussions concerning the validity of the z-test

to compare two proportions (Section 16.3) and of the chi-squared test for a 2� 2

table (Section 17.2 above). It is most easily described in the context of a particular

example.

Example 17.2

Table 17.2 shows the results from a study to compare two treatment regimes for

controlling bleeding in haemophiliacs undergoing surgery. Only one (8%) of the 13

haemophiliacs given treatment regime A suffered bleeding complications, com-

pared to three (25%) of the 12 given regime B. These numbers are too small for the

chi-squared test to be valid; the overall total, 25, is less than 40, and the smallest

expected value, 1.9 (complications with regime B), is less than 5. The exact test is

therefore indicated.

Table 17.2 Comparison of two treatment regimes for controlling bleeding in

haemophiliacs undergoing surgery.

Bleeding complications

Treatment regime Yes No Total

A (group 1) 1 (d1) 12 (h1) 13 (n1)

B (group 0) 3 (d0) 9 (h0) 12 (n0)

Total 4 (d ) 21 (h) 25 (n)

The exact test is based on calculating the exact probabilities of the observed table

and of more ‘extreme’ tables with the same row and column totals, using the

following formula:

Exact probability of 2� 2 table ¼ d!h!n1!n0!

n!d1!d0!h1!h0!

where the notation is the same as that defined in Table 16.1. The exclamation

mark denotes the factorial of the number and means all the integers from

the number down to 1 multiplied together. (0! is defined to equal 1.) Many calcula-

tors have a key for factorial, although this expression may be easily computed by

cancelling factors in the top and bottom. The exact probability of Table 17.2 is

therefore:
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4!21!13!12!

25!1!3!12!9!
¼ 4� 13� 12� 11� 10

25� 24� 23� 22
¼ 0:2261

(21! being cancelled into 25!, for example, leaving 25� 24� 23� 22).

In order to test the null hypothesis that there is no difference between the

treatment regimes, we need to calculate not only the probability of the observed

table but also the probability that a more extreme table could occur by chance.

Altogether there are five possible tables that have the same row and column totals

as the data. These are shown in Table 17.3 together with their probabilities, which

total 1. The observed case is Table 17.3(b) with a probability of 0.2261.

Table 17.3 All possible tables with the same row and column totals as Table 17.2,

together with their probabilities.

(a) Total (b) Total

0 13 13 1 12 13

4 8 12 3 9 12

Total 4 21 25 Total 4 21 25

P ¼ 0:0391 P ¼ 0:2261

(c) Total (d) Total

2 11 13 3 10 13

2 10 12 1 11 12

Total 4 21 25 Total 4 21 25

P ¼ 0:4070 P ¼ 0:2713

(e) Total

4 9 13

0 12 12

Total 4 21 25

P ¼ 0:0565

There are two approaches to calculating the P-value. In the first approach, more

extreme is defined as less probable; more extreme tables are therefore 17.3(a) and

17.3(e) with probabilities 0.0391 and 0.0565 respectively. The total probability

needed for the P-value is therefore 0:2261þ 0:0391þ 0:0565 ¼ 0:3217, and so

there is clearly no evidence against the null hypothesis of no difference between

the regimes.

P-value (approach I) ¼ probability of observed tableþ probability of

less probable tables

P-value (approach II) ¼ 2� (probability of observed tableþ probability

of more extreme tables in the same direction)
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The alternative approach is to restrict the calculation to extreme tables showing

differences in the same direction as that observed, and then to double the resulting

probability in order to cover differences in the other direction. In this example, the

P-value thus obtained would be twice the sum of the probabilities of Tables

17.3(a) and 17.3(b), namely 2� (0:0391þ 0:2261) ¼ 0:5304. Neither method is

clearly superior to the other, but the second method is simpler to carry out.

Although the two approaches give different results, the choice is unlikely, in

practice, to affect the assessment of whether the observed difference is due to

chance or to a real effect.

17.4 LARGER CONTINGENCY TABLES

So far, we have dealt with 2� 2 tables, which are used to display data classified

according to the values of two binary variables. The chi-squared test can also be

applied to larger tables, generally called r��c tables, where r denotes the number of

rows in the table and c the number of columns.

�2 ¼ �
(O� E)2

E
, d:f : ¼ (r� 1)� (c� 1)

There is no continuity correction or exact test for contingency tables larger than

2� 2. Cochran (1954) recommends that the approximation of the chi-squared test

is valid provided that less than 20% of the expected numbers are under 5 and none

is less than 1. This restriction can sometimes be overcome by combining rows (or

columns) with low expected numbers, providing that these combinations make

biological sense.

There is no quick formula for a general r� c table. The expected numbers

must be computed for each cell. The reasoning employed is the same as that

described above for the 2� 2 table. The general rule for calculating an expected

number is:

E ¼ column total� row total

overall total

It is worth pointing out that the chi-squared test is only valid if applied to the

actual numbers in the various categories. It must never be applied to tables

showing just proportions or percentages.

AQ1
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Example 17.3

Table 17.4(a) shows the results from a survey to compare the principal

water sources in three villages in West Africa. These data were also presented

when we introduced cross-tabulations in Chapter 3. The numbers of households

using a river, a pond, or a spring are given. We will treat the water source as

outcome and village as exposure, so column percentages are displayed. For

example, in village A, 40.0% of households use mainly a river, 36.0% a pond

and 24.0% a spring. Overall, 70 of the 150 households use a river. If there were no

difference between villages one would expect this same proportion of river usage

in each village. Thus the expected numbers of households using a river in villages

A, B and C, respectively, are:

70

150
� 50 ¼ 23:3,

70

150
� 60 ¼ 28:0 and

70

150
� 40 ¼ 18:7

The expected numbers can also be found by applying the general rule. For

example, the expected number of households in village B using a river is:

row total (B)� column total (river)

overall total
¼ 60� 70

150
¼ 28:0

The expected numbers for the whole table are given in Table 17.4(b).

Table 17.4 Comparison of principal sources of water used by households in three

villages in West Africa.

(a) Observed numbers.

Water source

Village River Pond Spring Total

A 20 (40.0%) 18 (36.0%) 12 (24.0%) 50 (100.0%)

B 32 (53.3%) 20 (33.3%) 8 (13.3%) 60 (100.0%)

C 18 (45.0%) 12 (30.0%) 10 (25.0%) 40 (100.0%)

Total 70 (46.7%) 50 (33.3%) 30 (20.0%) 150 (100.0%)

(b) Expected numbers.

Water source

Village River Pond Spring Total

A 23.3 16.7 10.0 50

B 28.0 20.0 12.0 60

C 18.7 13.3 8.0 40

Total 70 50 30 150

172 Chapter 17: Chi-squared tests for 2�� 2 and larger contingency tables



�2 ¼�
(O� E)2

E

¼ (20� 23:3)2=23:3þ (18� 16:7)2=16:7þ (12� 10:0)2=10:0þ
(32� 28:0)2= 28:0þ (18� 18:7)2=18:7þ (20� 20:0)2=20:0þ
(8� 12:0)2=12:0þ (12� 13:3)2=13:3þ (10� 8:0)2=8:0

¼ 3:53

d:f : ¼ (r� 1)� (c� 1) ¼ 2� 2 ¼ 4

The corresponding P-value (derived using a computer) is 0.47, so we can conclude

that there is no evidence of a difference between the villages in the proportion of

households using different water sources. Alternatively, we can see from the

fourth row of Table A5 (see Appendix) that since 3.53 lies between 3.36 and

5.39, the P-value lies between 0.25 and 0.5.

17.5 ORDERED EXPOSURES: x2 TEST FOR TREND

We now consider the special case where we have a binary outcome variable and

several exposure categories, which have a natural order. The standard chi-squared

test for such data is a general test to assess whether there are differences among the

proportions in the different exposure groups. The x2 test for trend, described now,

is a more sensitive test that assesses whether there is an increasing (or decreasing)

trend in the proportions over the exposure categories.

Example 17.4

Table 17.5 shows data from a study that examined the association between obesity

and age at menarche in women. The outcome was whether the woman was aged

< 12 years at menarche (event D) or aged > 12þ years (event H). The exposure,

obesity, is represented by triceps skinfold, categorised into three groups. Although

it is conventional that the exposure variable is the row variable, this is not an

absolute rule. For convenience, we have not followed this convention, and have

Table 17.5. Relationship between triceps skinfold and early menarche. Data from a study on obesity in women

(Beckles et al. (1985) International Journal of Obesity 9: 127–35).

Triceps skinfold group

Age at menarche Small Intermediate Large Total

< 12 years (D) 15 (8.8%) 29 (12.8%) 36 (19.4%) 80

12þ years (H) 156 (91.2%) 197 (87.2%) 150 (80.6%) 503

Total 171 (100%) 226 (100%) 186 (100%) 583

Exposure group score (x) 0 1 2

Odds of early menarche 0.10 (0.06 to 0.16) 0.15 (0.10 to 0.22) 0.24 (0.17 to 0.35)

Log odds �2.34 (�2.87 to�1.81) �1.92 (�2.31 to�1.53) �1.43 (�1.79 to�1.06)
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Fig. 17.1 Log odds of early menarche according to skinfold thickness group.

presented the exposure in the columns and the outcome in the rows. It can be seen

that the proportion of women who had experienced early menarche increased with

triceps skinfold size. This can be examined using the x2 test for trend.

The first step is to assign scores to the exposure groups. The usual choice is simply

to number the columns 0, 1, 2, etc., as shownhere (or equivalently 1, 2, 3, etc.). This is

equivalent to assuming that the log odds goes up (or down) by equal amounts

between the exposure groups, or in other words that there is a linear relation-

ship between the two. The odds and log odds of early menarche are shown below

the exposure scores, and the log odds with 95% confidence intervals are plotted in

Figure 17.1. It is clear that the assumption of a linear increase in log odds, with

exposure group is reasonable. The difference in log odds is (�1:92� �2:34) ¼ 0:42

between groups 1 and 0, and (�1:43� �1:92) ¼ 0:49 between groups 2 and 1.

Another possibility would have been to use the means or medians of the triceps

skinfold measurements in each group. The assumption here would be a linear

relationship between log odds and triceps skinfold measurement. The two ap-

proaches will give similar results if the differences between the means (or medians)

are similar between the triceps skinfold groups.

The next step is to calculate three quantities for each exposure group in the table

and to sum the results of each. These are:

1 dx, the product of the observed number, d, with outcome D, and the exposure

group score, x;

2 nx, the product of the total, n, in the exposure group and its score, x; and

3 nx2, the product of the total, n, in the exposure group and the square of its

score, x2.
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UsingN to denote the overall total and O the total observed number of events (the

total of the top row), we then calculate:

U ¼ �(dx)� O

N
�(nx) and V ¼ O(N �O)

N2(N � 1)
[N�(nx2)� (�nx)2]

The increase in log odds ratio per group is estimated by U/V, with standard error

(
p

1=V ). The formula for the chi-squared statistic is:

x2trend ¼ U2

V
, d:f : ¼ 1

This tests the null hypothesis that the linear increase in log odds per exposure

group is zero.

There are various different forms for this test, most of which are algebraically

equivalent. The only difference is that in some forms (N � 1) is replaced by N in

the calculation of V. This difference is unimportant.

Example 17.4 (continued)

The calculations for the data presented in Table 17.5 are as follows:

�(dx) ¼ 15� 0þ 29�1þ 36�2 ¼ 101

�(nx) ¼ 171�0þ 226�1þ 186�2 ¼ 598

�(nx2) ¼ 171�0þ 226�1þ 186�4 ¼ 970

O ¼ 80, N ¼ 583, N �O ¼ 503

U ¼ 101� 80

583
� 598

� �
¼ 18:9417

V ¼ 80� 503

5832 � 582

� �
� (583� 970� 5982) ¼ 42:2927

The increase in log odds ratio per group is U=V ¼ 0:445: approximately an

average of the differences between groups 1 and 0, and 2 and 1 (see above). Its

standard error is (1=V )
p ¼ 0:154 and the 95% CI (derived in the usual way) is

0.146 to 0.749. This converts to an odds ratio per exposure group of 1.565 (95% CI

1.158 to 2.115). The chi-squared statistic is:

x2trend ¼ (18:9417)2

42:2927
¼ 8:483, d:f : ¼ 1, P ¼ 0:0036:
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There is therefore strong evidence that the odds of early menarche increased with

increasing triceps skinfold.

This is a simple example of a dose–response model for the association between an

exposure and a binary outcome. We show in Chapter 19 that a logistic regression

model for this association gives very similar results. Note that the difference

between the standard x2 value and the trend test x2 value provides a chi-squared

value with (c� 2) degrees of freedom to test for departures from linear trend, where

c is the number of exposure groups. Such tests are described in more detail, in the

context of regression modelling, in Section 29.6.
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18.1 INTRODUCTION

Previous chapters in this part of the book have presented methods to examine the

association between a binary outcome and two or more exposure (or treatment)

groups. We have used confidence intervals and P-values to assess the likely size of

the association, and the evidence that it represents a real difference in disease risk

between the exposure groups. However, before attributing any difference in

outcome between the exposure groups to the exposure itself, it is important to

examine whether the exposure–outcome association has been affected by other

factors that differ between the exposure groups and which also affect the outcome.

Such factors are said to confound the association of interest. Failure to control for

them can lead to confounding bias. This fundamental problem is illustrated by an

example in the next section.

In this chapter, we describe the Mantel–Haenszel method that uses stratification

to control for confounding when both the exposure and outcome are binary

variables. In Chapter 11, on multiple regression for the analysis of numerical

outcomes, we briefly described how regression models can be used to control for

confounding. We will explain this in much more detail in Chapter 20 in the context

of logistic regression for the analysis of binary outcomes.

18.2 CONFOUNDING

Example 18.1

Table 18.1 shows hypothetical results from a survey carried out to compare the

prevalence of antibodies to leptospirosis in rural and urban areas of the West

Indies, with rural residence as the exposure of interest.
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Table 18.1 Results of a survey of the prevalence of leptospirosis in rural and urban areas of the

West Indies.

Leptospirosis antibodies

Type of area Yes No Total Odds

Rural 60 (30%) 140 (70%) 200 0.429

Urban 60 (30%) 140 (70%) 200 0.429

Total 120 280 400

Since the numbers of individuals with and without antibodies are identical in

urban and rural areas, the odds ratio is exactly 1 and we would conclude that

there is no association between leptospirosis antibodies and urban/rural residence.

However, Table 18.2 shows that when the same sample is subdivided according to

gender, the risk of having antibodies is higher in rural areas for both males and

females. The disappearance of this effect when the genders are combined is caused

by a combination of two factors:

1 Females in both areas are much less likely than males to have antibodies.

2 The samples from the rural and urban areas have different gender compositions.

The proportion of males is 100/200 (50%) in the urban sample but only 50/200

(25%) in the rural sample.

Table 18.2 Association between antibodies to leptospirosis (the outcome variable) and rural/

urban residence (the exposure variable), separately in males and females.

(a) Males.

Antibodies

Type of area Yes No Total Odds

Rural 36 (72%) 14 (28%) 50 2.57

Urban 50 (50%) 50 (50%) 100 1.00

Total 86 64 150

OR ¼ 2:57=1 ¼ 2:57 (95% CI ¼ 1:21 to 5.45), P ¼ 0:011

(b) Females.

Antibodies

Type of area Yes No Total Odds

Rural 24 (16%) 126 (84%) 150 0.19

Urban 10 (10%) 90 (90%) 100 0.11

Total 34 216 250

OR ¼ 0:19=0:11 ¼ 1:71 (95% CI ¼ 0:778 to 3.78), P ¼ 0:176
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Gender is said to be a confounding variable because it is related both to the

outcome variable (presence of antibodies) and to the exposure groups being

compared (rural and urban). Ignoring gender in the analysis leads to a bias in

the results. Analysing males and females separately provides evidence of a differ-

ence between the rural and urban areas for males but not for females (Table 18.2).

However, we would like to be able to combine the information in the two tables to

estimate the association between leptospirosis antibodies and urban/rural resi-

dence, having allowed for the association of each of these with gender. We describe

how to do this in the next section.

In general confounding occurs when a confounding variable, C, is associatedwith

the exposure, E, and also influences the disease outcome, D. This is illustrated in

Figure 18.1. We are interested in the E–D association, but the E–C and C–D

associations may bias our estimate of the E–D association unless we take them into

account in our analysis.

In our example, failure to allow for gender masked an association with urban/

rural residence. In other situations similar effects could suggest a difference or

association where none exists, or could even suggest a difference the opposite way

around to one that does exist. For example, in the assessment of whether persons

suffering from schistosomiasis have a higher mortality rate than uninfected per-

sons, it would be important to take age into account since both the risk of dying

and the risk of having schistosomiasis increase with age. If age were not allowed

for, schistosomiasis would appear to be associated with increased mortality, even

if it were not, as those with schistosomiasis would be on average older and

therefore more likely to die than younger uninfected persons.

Note that a variable that is part of the causal chain leading from E to D is not a

confounder. That is, if E affects C, which in turn affects D, then we should not

adjust for the effect of C in our analysis of the E–D association (unless we wish to

estimate the effect of E on D which is not caused by the E–C association). For

example, even though smoking during pregnancy is related both to socio-economic

status and the risk of having a low birth-weight baby, it would be incorrect to

control for it when examining socio-economic differences in the risk of low birth

Fig. 18.1 Situation in which C may confound the affect of the E–D association.
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weight, since it is on the causal path. Controlling for it in the analysis would lead

to an underestimate of any socio-economic differences in risk. These issues are

discussed in more detail in Section 38.5.

Note that in clinical trials (and other experimental studies), randomization is used

to allocate individuals to the different treatment groups (see Chapter 34). Provided

that such trials are large enough to ensure that chance differences between the

groups are small, the problem of confounding is thus avoided, because the treat-

ment and control groups will be similar in all respects other than those under trial.

18.3 STRATIFICATION TO CONTROL FOR CONFOUNDING

One way to solve the problem of confounding in the analysis is to restrict

comparisons to individuals who have the same value of the confounding variable

C. Among such individuals associations with C cannot bias the E–D association,

because there is no variation in C. Thus in Example 18.1 above, the association

between leptospirosis antibodies and urban/rural residence was examined separ-

ately for males and females. The subsets defined by the levels of C are called strata,

and so this process is known as stratification. It leads to separate estimates of the

odds ratio for the E–D association in each stratum. There is no reason why C

should be a binary variable: for example we might allow for the confounding

effects of age by splitting a sample of adults aged 15 to 50 years into seven five-

year age groups.

Unless it appears that the association between the exposure and outcome varies

markedly between the strata (see Section 18.5), we will usually wish to combine the

evidence from the separate strata and summarize the association, controlling for

the confounding effect of C. The simplest approach would be to calculate an

average of the estimates of the odds ratios of the E–D association from the

different strata. However, we know that, in general, strata in which there are

more individuals will tend to have a more precise estimate of the association (i.e.

one with a smaller standard error) than strata in which there are fewer individuals.

We therefore calculate a weighted average, in which greater weight is given to the

strata with more data.

Weighted average OR ¼ �(wi �ORi)

�wi

where ORi is the odds ratio in stratum i, and wi is the weight it is given in the

calculation of the weighted average odds ratio. This is also known as the summary

odds ratio. Note that in a weighted average, the weights (wi) are always positive

numbers. The larger the value of wi, the more ORi influences the weighted average

OR. Also note that if all the weights were equal to 1, then the weighted average OR

would be equal to the mean OR.

The most widely used weighting scheme is that proposed by Mantel and

Haenszel, as described in the next section.
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18.4 MANTEL–HAENSZEL METHOD FOR 2� 2 TABLES

Mantel–Haenszel methods can be used to combine the evidence from the separate

strata, and summarize the association, controlling for the confounding effect of C.

We will describe their use when both the outcome and exposure are binary

variables. In this case, the stratified data will consist of c separate 2� 2 tables,

where c is the number of different values the confounding variable can take. Table

18.3 shows the notation we will use for the 2� 2 table in stratum i. It is exactly the

same as that in Table 16.1 for a single 2� 2 table, but with the subscript i added,

to refer to the stratum i. The estimate of the odds ratio for stratum i is:

ORi ¼ d1i � h0i

d0i � h1i

In Table 18.2, gender is the confounding variable; c ¼ 2, and we have two tables of

the association between rural/urban residence and presence of leptospirosis anti-

bodies, one for males and one for females.

Table 18.3 Notation for the 2� 2 table in stratum i.

Outcome

Experienced event:

D (Disease)

Did not experience event:

H (Healthy) Total

Group 1 (exposed) d1i h1i n1i
Group 0 (unexposed) d0i h0i n0i

Total di hi ni

Mantel–Haenszel estimate of the odds ratio controlled

for confounding

The Mantel–Haenszel estimate of the summary odds ratio, which we shall denote

as ORMH , is a weighted average of the odds ratios from the separate strata, with

weights:

wi ¼ d0i � h1i

ni

Since the numerator of the weight is the same as the denominator of the odds

ratio (ORi) in stratum i, wi �ORi ¼ (d1i � h0i)=ni. Using these weights therefore

leads to the following formula for the Mantel–Haenszel estimate of the odds

ratio:
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ORMH ¼ �(wi �ORi)

�wi

¼
�
d1i � h0i

ni

�
d0i � h1i

ni

Following the notation of Clayton and Hills (1993), this can alternatively be

written as:

ORMH ¼ Q=R, where

Q ¼ �
d1i � h0i

ni
and R ¼ �

d0i � h1i

ni

Example 18.1 (continued)

Table 18.4 shows the results of the calculations required to derive the Mantel–

Haenszel odds ratio combining the data presented separately for males and females

in Table 18.2 on the association between antibodies to leptospirosis (the outcome

variable) and rural/urban residence (the exposure variable). This Mantel–Haenszel

estimate of the odds ratio controlling for gender equals:

ORMH ¼ Q

R
¼ 20:64

9:71
¼ 2:13

After controlling for the confounding effect of gender, the odds of leptospirosis

antibodies are more than doubled in rural compared to urban areas. The summary

OR (2.13) is, as expected, in between the odds ratios from the two strata, but is

marginally closer to the OR for females (1.71) than it is to the OR for males (2.57).

This is because the weight allocated to the estimate for females (5.04) is a little

higher than that for males (4.67).

Table 18.4 Calculations required for deriving the Mantel–Haenszel OR, with associated confidence interval and P-

value.

Stratum i ORi wi ¼ d0i � h1i
ni

wiORi ¼ d1i � h0i
ni

Vi d1i E1i

Males ( i ¼ 1) 2.57
50� 14

150
¼ 4:67 12.00 8.21 36 28.67

Females ( i ¼ 2) 1.71
10� 126

250
¼ 5:04 8.64 7.08 24 20.40

Total R ¼ 9:71 Q ¼ 20:64 V ¼ 15:29 O¼60 E ¼ 49:07
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Standard error and confidence interval of the Mantel–Haenszel OR

The 95% confidence interval for ORMH is derived using the standard error of

logORMH , denoted by s:e:MH , in exactly the same way as that for a single odds

ratio (see Section 16.7):

95% CI ¼ ORMH=EF to ORMH � EF,

where the error factor EF ¼ exp(1:96� s:e:MH )

The simplest formula for the standard error of log ORMH (Clayton and Hills

1993) is:

s:e:MH ¼ [V=(Q� R)]
p

,

Q ¼ �
d1i � h0i

ni
, R ¼ �

d0i � h1i

ni
, V ¼ �Vi ¼ �

di � hi � n0i � n1i

n2i � (ni � 1)

V is the sum across the strata of the variances Vi for the number of exposed

individuals experiencing the outcome event, i.e. the variances of the d1i’s. Note

that the formula for the varianceVi of d1i for stratum i is based solely on themarginal

totals of the table. It therefore gives the same value for each of the four cells in the

table, implying they have equal variances. This is the case because oncewe knowone

cell value, we can deduce the others from the appropriate marginal totals.

Example 18.1 (continued)

Using the results of the calculations forQ,R andV shown inTable 18.4,we find that:

s:e:MH ¼ [V=(Q� R)]
p ¼ [15:287=(20:640� 9:71)] ¼ 0:276

p

so that EF ¼ exp(1:96� 0:276) ¼ 1:72, ORMH=EF ¼ 2:13=1:72 ¼ 1:24 and

ORMH� EF ¼ 2:13� 1:72 ¼ 3:65. The 95% CI is therefore:

95% CI for ORMH ¼ 1:24 to 3:65

With 95%confidence, the odds of leptospirosis is between 1.24 and 3.65 times higher

in rural than urban areas, having controlled for the confounding effect of gender.

Mantel–Haenszel x2 test

Finally, we test the null hypothesis that ORMH ¼ 1 by calculating the Mantel–

Haenszel x2 test statistic:
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�2
MH ¼ �d1i � �E1ið Þ2

�Vi

¼ O� Eð Þ2
V

¼ U2

V
; d:f : ¼ 1

This is based on a comparison in each stratum of the number of exposed individ-

uals observed to have experienced the event (d1i), with the expected number in this

category (E1i) if there were no difference in the risks between exposed and unex-

posed. The expected numbers are calculated in exactly the same way as that

described for the standard x2 test in Chapter 17:

E1i ¼ di � n1i

ni

The formula has been simplified by writingO for the sum of the observed numbers,

E for the sum of the expected numbers and U for the difference between them:

O ¼ �d1i, E ¼ �E1i and U ¼ O� E

Note that �2
MH has just 1 degree of freedom irrespective of how many strata are

summarized.

Example 18.1 (continued)

The calculations for the data presented in Table 18.2 are laid out in Table 18.4. A

total O ¼ 60 persons in rural areas had antibodies to leptospirosis compared with

an expected total of E ¼ 49:07, based on assuming no difference in prevalence

between rural and urban areas. Thus the Mantel–Haenszel x2 statistic is:

�2
MH ¼ U2

V
¼ (60� 49:07)2

15:29
¼ 7:82, d:f : ¼ 1, P ¼ 0:0052

After controlling for gender, there is good evidence of an increase in the preva-

lence of antibodies to leptospirosis among those living in rural compared to urban

areas.

It may seem strange that this test appears to be based entirely on the observed and

expected values of d1i and not also on the other cells in the tables. This is not really

the case, however, since once the value of d1i is known the values of h1i, d0i and h0i

can be calculated from the totals of the table. If the Mantel–Haenszel test is
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applied to a single 2� 2 table, the x2 value obtained is close to, but not exactly

equal to, the standard x2 value. It is slightly smaller, equalling (n� 1)=n times the

standard value. This difference is negligible for values of n of 20 or more, as

required for the validity of the chi-squared test.

Validity of Mantel–Haenszel methods

The Mantel–Haenszel estimate of the odds ratio is valid even for small sample

sizes. However, the formula that we have given for the standard error of log

ORMH will be inaccurate if the overall sample size is small. A more accurate

estimate, which is more complicated to calculate, was given by Robins et al.

(1986).

The validity of the Mantel–Haenszel x2 test can be assessed by the following

‘rule of 5’. Two additional values are calculated for each table and summed over

the strata. These are:

1 min(di, n1i), that is the smaller of di and n1i, and

2 max(0, n1i � hi), which equals 0 if n1i is smaller than or equal to hi, and

(n1i � hi), if n1i is larger than hi.

Both sums must differ from the total of the expected values, E, by at least 5 for the

test to be valid. The details of these calculations for the leptospirosis data are

shown in Table 18.5. The two sums, 84 and 0, both differ from 70.933 by 5 or

more, validating the use of the Mantel–Haenszel x2 test.

Table 18.5 Rule of 5, to check validity.

Stratum i Min(di , n1i), Max(0, n1i � hi) Ei

Males (i ¼ 1) Min(86, 50) ¼ 50 Max(0, �14) ¼ 0 57.333

Females (i ¼ 2) Min(34, 150) ¼ 34 Max(0, �116) ¼ 0 13.600

Total 84 0 70.933

18.5 EFFECT MODIFICATION

When we use Mantel–Haenszel methods to control for confounding we

are making an important assumption; namely that the Exposure–Disease (E–D)

association is really the same in each of the strata defined by the levels of

the confounding variable, C. If this is not true, then it makes little sense

to combine the odds ratios (the estimates of the effect of E on D) from

the different strata. If the effect of E on D varies according to the level of

C then we say that C modifies the effect of E on D: in other words there

is effect modification. A number of different terms are used to describe effect

modification:
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� Effect modification: C modifies the effect of E on D.

� Interaction: there is interaction between the effects of E and C (on D).

� Heterogeneity between strata: the estimates of the E–D association differ

between the strata.

Similarly, you may see tests for effect modification described as either tests for

interaction or tests of homogeneity across strata.

Testing for effect modification

The use of regression models to examine effect modification (or equivalently

interaction) is discussed in Section 29.5. This is the most flexible

approach. When we are using Mantel–Haenszel methods to control for con-

founding, an alternative is to use a x2 test for effect modification. This is

equivalently, and more commonly, called a x2 test of heterogeneity. Under

the null hypothesis of no effect modification, all the individual stratum odds

ratios would equal the overall summary odds ratio. In other words:

ORi ¼ d1i � h0i

d0i � h1i
¼ ORMH

Multiplying both sides of the equation by d0i � h1i and rearranging shows that,

under the null hypothesis of no effect modification, the following set of differences

would be zero:

(d1i � h0i �ORMH � d0i � h1i) ¼ 0

The x2 test of heterogeneity is based on a weighted sum of the squares of these

differences:

�2 ¼ �
d1i � h0i �ORMH � d0i � h1ið Þ2

ORMH � Vi � n2i
, d:f : ¼ c� 1

where Vi is as defined in Section 18.4, and c is the number of strata. The greater

the differences between the stratum-specific odds ratios and ORMH , the larger will

be the heterogeneity statistic.

Example 18.1 (continued)

In our example, the odds ratios were 2.57 (95% CI 1.21 to 5.45) in males and 1.71

(95% CI 0.778 to 3.78) in females. Given that the confidence intervals easily

overlapped, we would not expect to find evidence of effect modification (i.e. that

the OR in males is different to the OR in females). The calculations needed to
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Table 18.6 Calculations required for the x2 test of heterogeneity.

Stratum

( i )
d1i � h0i � ORMH � d0i � h1ið Þ2 ORMH � Vi � n2i

d1i � h0i � ORMH � d0i � h1ið Þ2
ORMH � Vi � n2i

Males (36� 50� 2:13� 50� 14)2 2:13� 8:21� 1502 97056:2

392737
¼ 0:247(i ¼ 1) ¼ 97056:2 ¼ 392737

Females (24� 90� 2:13� 10� 126)2 2:13� 7:08� 1502
269601

940728
¼ 0:287(i ¼ 2) ¼ 269601 ¼ 940728

Total 0.534

apply the formula above are given in Table 18.6. The resulting value of the x2 test

of heterogeneity is:

x2 ¼ 0:534, d:f : ¼ 1, P ¼ 0:470

There is thus no evidence that gender modifies the association between rural/

urban residence and leptospirosis antibodies.

When does effect modification matter?

As discussed above, Mantel–Haenszel methods assume that the true E–

D odds ratio is the same in each stratum, and that the only reason

for differences in the observed odds ratios between strata is sampling

variation. We should therefore check this assumption, by applying the

x2 test for heterogeneity, before reporting Mantel–Haenszel odds ratios, confi-

dence intervals and P-values. This test has low power (see Chapter 35): it is

unlikely to yield evidence for effect modification unless there are large differences

between strata. A large P-value does not therefore establish the absence of

effect modification. In fact, as the true odds ratios are never likely to be

exactly the same in each stratum, effect modification is always present to

some degree. Most researchers would accept, however, that minor effect

modification should be ignored in order to simplify the presentation of the

data.

The following box summarizes a practical approach to examining for effect

modification, and recommends how analyses should be presented when evidence

for effect modification is found. These issues are also discussed in Section 29.5 and

Chapter 38, which describes strategies for data analysis.
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BOX 18.1 A PRACTICAL APPROACH TO EXAMINING FOR

EFFECT MODIFICATION

1 Always examine the pattern of odds ratios in the different strata: how

different do they look, and is there any trend across strata?

2 If there is clear evidence of effect modification, and substantial differences

in the E–D association between strata, report this and report the E–D

association separately in each stratum.

3 If there is moderate evidence of effect modification, use Mantel–Haenszel

methods but in addition report stratum-specific estimates of the E–D

association.

4 If there is no evidence of effect modification, report this and use Mantel–

Haenszel methods.

18.6 STRATIFICATION ON MORE THAN ONE CONFOUNDING

VARIABLE

It is possible to apply the Mantel–Haenszel methods to control simultaneously for

the effects of two or more confounders. For example, we can control additionally

for differences in age distribution between the urban and rural areas by grouping

our population into four age groups and forming the 2� 4 ¼ 8 strata correspond-

ing to all combinations of gender and age group. The drawback to this approach is

that the number of strata increases rapidly as we attempt to control for the effects

of more confounding variables, so that it becomes impossible to estimate

the stratum-specific odds ratios (although the Mantel-Haenszel OR can still be

derived).

The alternative is to use regression models. The use of logistic regression models

to control for confounding is considered in detail in Chapter 20.
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19.1 INTRODUCTION

In this chapter we introduce logistic regression, the method most commonly used

for the analysis of binary outcome variables. We show how it can be used to

examine the effect of a single exposure variable, and in particular, how it can be

used to:

� Compare a binary outcome variable between two exposure (or treatment)

groups.

� Compare more than two exposure groups.

� Examine the effect of an ordered or continuous exposure variable.

We will see that it gives very similar results to the methods for analysing odds ratios

described in Chapters 16, 17 and 18, and is an alternative to them. We will also see

how logistic regression provides a flexible means of analysing the association

between a binary outcome and a number of exposure variables. In the next

chapter, we will explain how it is used to control for confounding. We will also

briefly describe the regression analysis of risk ratios, and methods for the analysis

of categorical outcomes with more than two levels.

We will explain the principles of logistic regression modelling in detail in the

next section, in the simple context of comparing two exposure groups. In particu-

lar, we will show how it is based on modelling odds ratios, and explain how to

interpret the computer output from a logistic regression analysis. We will then

introduce the general form of the logistic regression equation, and explain where

the name ‘logistic’ comes from. Finally we will explain how to fit logistic regres-

sion models for categorical, ordered or continuous exposure variables.

Links between multiple regression models for the analysis of numerical out-

comes, the logistic regression models introduced here, and other types of regres-

sion model introduced later in the book, are discussed in detail in Chapter 29.

CHAPTER 19

Logistic regression: comparing two or
more exposure groups
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19.2 LOGISTIC REGRESSION FOR COMPARING TWO EXPOSURE

GROUPS

Introducing the logistic regression model

We will start by showing, in the simple case of two exposure groups, how logistic

regression models the association between binary outcomes and exposure vari-

ables in terms of odds ratios. Recall from Chapter 16 that the exposure odds ratio

(OR) is defined as:

Exposure odds ratio ¼ Odds in exposed group

Odds in unexposed group

If we re-express this as:

Odds in exposed ¼ Odds in unexposed� Exposure odds ratio

then we have the basis for a simple model for the odds of the outcome, which

expresses the odds in each group in terms of two model parameters. These are:

1 The baseline odds. We use the term baseline to refer to the exposure group

against which all the other groups will be compared. When there are just two

exposure groups as here, then the baseline odds are the odds in the unexposed

group. We will use the parameter name ‘Baseline’ to refer to the odds in the

baseline group.

2 The exposure odds ratio. This expresses the effect of the exposure on the odds of

disease. We will use the parameter name ‘Exposure’ to refer to the exposure

odds ratio.

Table 19.1 shows the odds in each of the two exposure groups, in terms of the

parameters of the logistic regression model.

Table 19.1 Odds of the outcome in terms of the parameters of a logistic regression model comparing two exposure

groups.

Exposure group Odds of outcome

Odds of outcome, in terms of

the parameter names

Exposed (group 1) Baseline odds� exposure odds ratio Baseline� Exposure

Unexposed (group 0) Baseline odds Baseline

The logistic regression model defined by the two equations for the odds of the

outcome shown in Table 19.1 can be abbreviated to:

Odds ¼ Baseline� Exposure
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Since the two parameters in this model multiply together, the model is said to be

multiplicative. This is in contrast to the multiple regression models described in

Chapter 11, in which the effects of different exposures were additive. If there were

two exposures (A and B), the model would be:

Odds ¼ Baseline� Exposure(A)� Exposure(B)

Thus if, for example, exposure A doubled the odds of disease and exposure B

trebled it, a person exposed to both would have a six times greater odds of disease

than a person in the baseline group exposed to neither. We describe such models in

detail in the next chapter.

Example 19.1

All our examples of logistic regression models are based on data from a study of

onchocerciasis (‘river blindness’) in Sierra Leone (McMahon et al. 1988, Trans

Roy Soc Trop Med Hyg 82; 595–600), in which subjects were classified according

to whether they lived in villages in savannah (grassland) or rainforest areas. In

addition, subjects were classified as infected if microfilariae (mf) of Onchocerciasis

volvulus were found in skin snips taken from the iliac crest. The study included

persons aged 5 years and above. Table 19.2 shows that the prevalence of micro-

filarial infection appears to be greater for individuals living in rainforest areas

compared to those living in the savannah; the associated odds ratio is

2:540=1:052 ¼ 2:413.

We will now show how to use logistic regression to examine the association

between area of residence andmicrofilarial infection in these data. Touse a computer

package to fit a logistic regression model, it is necessary to specify just two items:

1 The name of the outcome variable, which in this case is mf. The required

convention for coding is to code the outcome event (D) as 1, and the absence

of the outcome event (H) as 0. The variable mf was therefore coded as 0 for

uninfected subjects and 1 for infected subjects.

2 The name of the exposure variable(s). In this example, we have just one exposure

variable, which is called area. The required convention for coding is that used

throughout this book; thus area was coded as 0 for subjects living in savannah

areas (the baseline or ‘unexposed’ group) and 1 for subjects living in rainforest

areas (the ‘exposed’ group).

Table 19.2 Numbers and percentages of individuals infected with onchocerciasis according to their area of

residence, in a study of 1302 individuals in Sierra Leone.

Microfilarial infection

Area of residence Yes No Total Odds of infection

Rainforest d1 ¼ 541 (71.7%) h1 ¼ 213 (28.3%) 754 541=213 ¼ 2:540

Savannah

(baseline group)

d0 ¼ 281 (51.3%) h0 ¼ 267 (48.7%) 548 281=267 ¼ 1:052

Total 822 480 1302
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Table 19.3 First ten lines of the computer dataset

from the study of onchocerciasis.

id mf Area

1 1 0

2 1 1

3 1 0

4 0 1

5 0 0

6 0 1

7 1 0

8 1 1

9 1 1

10 1 1

The first ten lines of the dataset, when entered on the computer, are shown in

Table 19.3. For example, subject number 1 lived in a savannah area and was

infected, number 2 lived in a rainforest area and was also infected, whereas subject

number 4 lived in a rainforest area but was not infected.

The logistic regression model that will be fitted is:

Odds of mf infection ¼ Baseline�Area

Its two parameters are:

1 baseline: the odds of infection in the baseline group (subjects living in savannah

areas); and

2 area: the odds ratio comparing odds of infection among subjects living in

rainforest areas with that among those living in savannah areas.

Table 19.4 shows the computer output obtained from fitting this model.

The two rows in the output correspond to the two parameters of the logistic

regression model; area is our exposure of interest, and the constant term refers

to the baseline group. The same format is used for both parameters, and is based

on what makes sense for interpretation of the effect of exposure. This means that

some of the information presented for the constant (baseline) parameter is not of

interest.

Table 19.4 Logistic regression output for the model relating odds of infection to area of

residence, in 1302 subjects participating in a study of onchocerciasis in Sierra Leone.

Odds ratio z P > jzj 95% CI

Area 2.413 7.487 0.000 1.916 to 3.039

Constant 1.052 0.598 0.550 0.890 to 1.244
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The column labelled ‘Odds ratio’ contains the parameter estimates:

1 For the first row, labelled ‘area’, this is the odds ratio (2.413) comparing

rainforest (area 1) with savannah (area 0). This is identical to the odds ratio

which was calculated directly from the raw data (see Table 19.3).

2 For the second row, labelled ‘constant’, this is the odds of infection in the

baseline group (1:052 ¼ odds of infection in the savannah area, see Table

19.3). As we will see, this apparently inconsistent labelling is because output

from regression models is labelled in a uniform way.

The remaining columns present z statistics, P-values and 95% confidence intervals

corresponding to the model parameters. The values for area are exactly the same

as those that would be obtained by following the procedures described in Section

16.7 for the calculation of a 95% confidence interval for an odds ratio, and the

associated Wald test. They will be explained in more detail in the explanation of

Table 19.5 below.

The logistic regression model on a log scale

As described inChapter 16, confidence intervals for odds ratios are derived by using

the standard error of the log odds ratio to calculate a confidence interval for the

log odds ratio. The results are then antilogged to express them in terms of the

original scale. The same is true for logistic regression models; they are fitted

on a log scale. Table 19.5 shows the two equations that define the logistic regres-

sion model for the comparison of two exposure groups. The middle column

shows the model for the odds of the outcome, as described above. Using the

rules of logarithms (see p. 156, Section 16.5), it follows that corresponding equa-

tions on the log scale for the log of the odds of the outcome are as shown in the right-

hand column. Note that as in the rest of the book all logs are to the base e (natural

logarithms) unless they are explicitly denoted as logs to the base 10 by log10 (see

Section 13.2).

Table 19.5 Equations defining the logistic regression model for the comparison of two exposure groups.

Exposure group Odds of outcome Log odds of outcome

Exposed (group 1) Baseline odds� exposure OR Log(baseline odds)þ log(exposure OR)

Unexposed (group 0) Baseline odds Log(baseline odds)

Using the parameter names introduced earlier in this section, the logistic regres-

sion model on the log scale can be written:

log(Odds) ¼ log(Baseline)þ log(Exposure odds ratio)
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In practice, we abbreviate it to:

log(Odds) ¼ Baseline þ Exposure

since it is clear from the context that output on the log scale refers to log odds and

log odds ratios. Note that whereas the exposure effect on the odds ratio scale is

multiplicative, the exposure effect on the log scale is additive.

Example 19.1 (continued)

In this example, the model on the log scale is:

log(Odds of mf infection) ¼ BaselineþArea

where

1 baseline is the log odds of infection in the savannah areas; and

2 area is the log odds ratio comparing the odds of infection in rainforest areas with

that in savannah areas.

Table 19.6 shows the results obtained on the log scale, for this model. We will

explain each item in the table, and then discuss how the results relate to those on

the odds ratio scale, shown in Table 19.4.

Table 19.6 Logistic regression output (log scale) for the association between microfilarial infection

and area of residence.

Coefficient s.e. z P > jzj 95% CI

Area 0.881 0.118 7.487 0.000 0.650 to 1.112

Constant 0.0511 0.0854 0.598 0.550 �0.116 to 0.219

1 The two rows in the output correspond to the terms in the model; area is our

exposure of interest, and as before the constant term corresponds to the baseline

group.

2 The first column gives the results for the regression coefficients (corresponding

to the parameter estimates on a log scale):

(a) For the row labelled ‘area’, this is the log odds ratio comparing rainforest

with savannah. It agrees with what would be obtained if it were calculated

directly from Table 19.3, and with the value in Table 19.4:

logOR ¼ log(2:540=1:052) ¼ log(2:413) ¼ 0:881

(b) For the row labelled ‘constant’, this is the log odds in the baseline group (the

group with exposure level 0), i.e. the log odds of microfilarial infection in

the savannah:
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log odds ¼ log(281=267) ¼ log(1:052) ¼ 0:0511:

3 The second column gives the standard error(s) of the regression coefficient(s). In

the simple example of a binary exposure variable, as we have here, the standard

errors of the regression coefficients are exactly the same as those derived using

the formulae given in Chapter 16. Thus:

(a) s.e.(logOR comparing rainforest with savannah) is:

(1=d1 þ 1=h1 þ 1=d0 þ 1=h0)
p ¼ (1=541þ 1=213þ 1=281þ 1=267)

p

¼ 0:118

(b) s.e.(log odds in savannah) is:

(1=d0 þ 1=h0)
p ¼ (1=281þ 1=267)

p ¼ 0:0854

4 The 95% confidence intervals for the regression coefficients in the last column

are derived in the usual way.

(a) For the logOR comparing rainforest with savannah, the 95% CI is:

0:881� (1:96� 0:118) to 0:881þ (1:96� 0:118) ¼ 0:650 to 1:112

(b) For the log odds in the savannah, the 95% CI is:

0:0511� (1:96� 0:0854) to 0:0511þ (1:96� 0:0854) ¼ �0:116 to 0:219

5 The z statistic in the area row of the third column is used to derive a Wald

test (see Chapter 28) of the null hypothesis that the area coefficient ¼ 0, i.e.

that the exposure has no effect (since if log OR ¼ 0, then OR must be equal to

1). This z statistic is simply the regression coefficient divided by its standard

error:

z ¼ 0:881=0:118 ¼ 7:487

6 The P-value in the fourth column is derived from the z statistic in the usual

manner (see Table A1 and Chapter 8), and can be used to assess the strength of

the evidence against the null hypothesis that the true (population) exposure

effect is zero. Thus, the P-value of 0.000 (which should be interpreted as

< 0:001) for the logOR comparing rainforest with savannah indicates that

there is strong evidence against the null hypothesis that the odds of microfilarial

infection are the same in the two areas.

7 We are usually not interested in in the third and fourth columns (the z statistic

and its P-value) for the constant row. However, for completeness, we will

explain their meanings:
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(a) The z statistic is the result of testing the null hypothesis that the

log odds of infection in the savannah areas are 0 (or, equivalently, that

the odds of infection are 1). This would happen if the risk of infection in

the savannah areas was 0.5; in other words if people living in the savan-

nah areas were equally likely to be infected as they were to be not

infected.

(b) The P-value of 0.550 for the log odds in savannah areas indicates that

there is no evidence against this null hypothesis.

Relation between outputs on the ratio and log scales

We will now explain the relationship between the two sets of outputs, since the

results in Table 19.4 (output on the original, or ratio, scale) are derived from

the results in Table 19.6 (output on the log scale). Once this is understood, it is

rarely necessary to refer to the output displayed on the log scale: the most useful

results are the odds ratios, confidence intervals and P-values displayed on the

original scale, as in Table 19.4.

1 In Table 19.4, the column labelled ‘Odds Ratio’ contains the exponentials

(antilogs) of the logistic regression coefficients shown in Table 19.6. Thus the

OR comparing rainforest with savannah ¼ exp (0:881) ¼ 2:413.

2 The z statistics and P-values are derived from the log odds ratio and its standard

error, and so are identical in the two tables.

3 The 95% confidence intervals in Table 19.4 are derived by antilogging

(exponentiating) the confidence intervals on the log scale presented in

Table 19.6. Thus the 95% CI for the OR comparing rainforest with savannah

is:

95% CI ¼ exp(0:650) to exp(1:112) ¼ 1:916 to 3:039

This is identical to the 95% CI calculated using the methods described in Section

16.7:

95% CI (OR) ¼ OR=EF to OR� EF, where EF ¼ exp[1:96� s:e:( log OR)]

Note that since the calculations are multiplicative:

Odds ratio

Lower confidence limit
¼ Upper confidence limit

Odds ratio

This can be a useful check on confidence limits presented in tables in published

papers.
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19.3 GENERAL FORM OF THE LOGISTIC REGRESSION EQUATION

We will now introduce the general form of the logistic regression model with

several exposure variables, and explain how it corresponds to what we used above

in the simple case when we are comparing two exposure groups, and therefore

have a single exposure variable in our model. The general form of the logistic

regression model is similar to that for multiple regression (see Chapter 11):

log odds of outcome ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp

The difference is that we are modelling a transformation of the outcome variable,

namely the log of the odds of the outcome. The quantity on the right-hand side of

the equation is known as the linear predictor of the log odds of the outcome, given

the particular value of the p exposure variables x1 to xp. The �’s are the regression

coefficients associated with the p exposure variables.

The transformation of the probability, or risk, � of the outcome into the

log odds is known as the logit function:

logit(�) ¼ log
�

1� �


 �

and the name logistic is derived from this. Recall from Section 14.6 (Table 14.2)

that while probabilities must lie between 0 and 1, odds can take any value between

0 and infinity (1). The log odds are not constrained at all; they can take any value

between �1 and 1.

We will now show how the general form of the logistic regression model

corresponds to the logistic regression model we used in Section 19.2 for comparing

two exposure groups. The general form for comparing two exposure groups is:

log odds of outcome ¼ �0 þ �1x1

where x1 (the exposure variable) equals 1 for those in the exposed group and 0 for

those in the unexposed group. Table 19.7 shows the value of the log odds predicted

Table 19.7 Log odds of the outcome according to exposure group, as calculated from the linear predictor in the

logistic regression equation.

Exposure group

Log odds of outcome,

predicted from model

Log odds of outcome, in terms of the

parameter names

Exposed (x1 ¼ 1) �0 þ �1 � 1 ¼ �0 þ �1 log(Baseline odds) þ log(Exposure odds ratio)

Unexposed (x1 ¼ 0) �0 þ �1 � 0 ¼ �0 log(Baseline odds)
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from this model in each of the two exposure groups, together with the log odds

expressed in terms of the parameter names, as in Section 19.2.

We can see that the first regression coefficient, �0, corresponds to the

log odds in the unexposed (baseline) group. We will now show how the

other regression coefficient, �1, corresponds to the log of the exposure odds

ratio. Since:

Exposure OR ¼ odds in exposed group

odds in unexposed group

it follows from the rules of logarithms (see p. 156) that:

log OR ¼ log(odds in exposed group)� log(odds in unexposed group)

Putting the values predicted from the logistic regression equation (shown in Table

19.7) into this equation gives:

log OR ¼ �0 þ �1 � �0 ¼ �1

The equivalent model on the ratio scale is:

Odds of disease ¼ exp(�0 þ �1x1) ¼ exp(�0)� exp(�1x1)

In this multiplicative model exp(�0) corresponds to the odds of disease in the

baseline group, and exp(�1) to the exposure odds ratio. Table 19.8 shows how

this model corresponds to the model shown in Table 19.1.

Table 19.8 Odds of outcome according to exposure group, as calculated from the linear predictor in the logistic

regression equation.

Exposure group

Odds of outcome, predicted from

model

Odds of outcome, in terms of the parameter

names

Exposed (x1 ¼ 1Þ exp(�0)� exp(�1) Baseline odds � Exposure odds ratio

Unexposed (x1 ¼ 0) exp(�0) Baseline odds

19.4 LOGISTIC REGRESSION FOR COMPARING MORE THAN TWO

EXPOSURE GROUPS

We now consider logistic regression models for categorical exposure variables with

more than two levels. To examine the effect of categorical variables in logistic and

other regression models, we look at the effect of each level compared to a baseline

group. When the exposure is an ordered categorical variable, it may also be useful

to examine the average change in the log odds per exposure group, as described in

Section 19.5.

Au/BSL: Complete
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Table 19.9 Association between age group and microfilarial infection in the onchocerciasis study.

Age

group

Coded

value in
Microfilarial infection

Odds of Odds ratio compared to the

(years) dataset Yes No infection baseline group

5–9 0 46 156 46=156 ¼ 0:295 1

10–19 1 99 119 99=119 ¼ 0:832 0:832=0:295 ¼ 2:821

20–39 2 299 125 299=125 ¼ 2:392 2:392=0:295 ¼ 8:112

� 40 3 378 80 378=80 ¼ 4:725 4:725=0:295 ¼ 16:02

Total 822 480

Example 19.2

In the onchocerciasis study, introduced in Example 19.1, subjects were classified

into four age groups: 5–9, 10–19, 20–39 and � 40 years. Table 19.9 shows the

association between age group and microfilarial infection. The odds of infection

increased markedly with increasing age. A chi-squared test for association in this

table gives P < 0:001, so there is clear evidence of an association between age

group and infection. We chose the 5–9 year age group as the baseline exposure

group, because its coded value in the dataset is zero, and calculated odds ratios for

each non-baseline group relative to the baseline group.

The corresponding logistic regression model uses this same approach; the effect

of each non-baseline age group is expressed in terms of the odds ratio comparing it

with the baseline. The parameters of the model, on both the odds and log odds

scales, are shown in Table 19.10.

Table 19.10 Odds and log odds of the outcome in terms of the parameters of a logistic

regression model comparing four age groups.

Age group Odds of infection Log odds of infection

0 (5–9 years) Baseline Log(Baseline)

1 (10–19 years) Baseline� Agegrp(1) Log(Baseline)þ Log(Agegrp(1))

2 (20–39 years) Baseline� Agegrp(2) Log(Baseline)þ Log(Agegrp(2))

3 (� 40 years) Baseline� Agegrp(3) Log(Baseline)þ Log(Agegrp(3))

Here, Agegrp(1) is the odds ratio (or, on the log scale, the log odds ratio)

comparing group 1 (10–19 years) with group 0 (5–9 years, the baseline group),

and so on. This regression model has four parameters:

1 the odds of infection in the 5–9 year group (the baseline group); and

2 the three odds ratios comparing the non-baseline groups with the baseline.

Using the notation introduced in Section 19.2, the four equations for the odds that

define the model in Table 19.10 can be written in abbreviated form as:

Odds ¼ Baseline�Agegrp

or on a log scale, as:
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log (Odds) ¼ BaselineþAgegrp

The effect of categorical variables is modelled in logistic and other regression

models by using indicator variables, which are created automatically by most

statistical packages when an exposure variable is defined as categorical. This is

explained further in Box 19.1. Output from this model (expressed on the odds

ratio scale, with the constant term omitted) is shown in Table 19.11.

Table 19.11 Logistic regression output (odds ratio scale) for the association

between microfilarial infection and age group.

Odds ratio z P > jzj 95% CI

agegrp(1) 2.821 4.802 0.000 1.848 to 4.308

agegrp(2) 8.112 10.534 0.000 5.495 to 11.98

agegrp(3) 16.024 13.332 0.000 10.658 to 24.09

BOX 19.1 USE OF INDICATOR VARIABLES IN REGRESSION

MODELS

To model the effect of an exposure with more than two categories, we

estimate the odds ratio for each non-baseline group compared to the base-

line. In the logistic regression equation, we represent the exposure by a set of

indicator variables (variables which take only the values 0 and 1) representing

each non-baseline value of the exposure variable. The regression coefficients

for these indicator variables are the corresponding (log) odds ratios. For

example, to estimate the odds ratios comparing the 10–19, 20–39 and

� 40 year groups with the 5–9 year group, we create three indicator variables

which we will call ageind1, ageind2 and ageind3 (the name is not important).

The table below shows the value of these indicator variables according to age

group.
Value of indicator variables for use in logistic regression of the

association between microfilarial infection and age group.

Age group ageind1 ageind2 ageind3

0 (5–9 years) 0 0 0

1 (10–19 years) 1 0 0

2 (20–29 years) 0 1 0

3 (� 40 years) 0 0 1

All three of these indicator variables (but not the original variable) are

then included in a logistic regression model. Most statistical packages create

the indicator variables automatically when the original variable is declared

as categorical.
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The P-values for the three indicator variables (corresponding to the non-baseline

age groups) can be used to test the null hypotheses that there is no difference in

odds of the outcome between the individual non-baseline exposure groups and

the baseline group. However, these are not usually of interest: we need a test,

analogous to the x2 test for a table with four rows and two columns, of the

general null hypothesis that there is no association between age group and

infection. We will see how to test such null hypotheses in regression models in

Chapter 29, and in the next section we address the special case when the

categorical variable is ordered, as is the case here. It is usually a mistake to

conclude that there is a difference between one exposure group and the rest

based on a particular (small) P-value corresponding to one of a set of indicator

variables.

19.5 LOGISTIC REGRESSION FOR ORDERED AND CONTINUOUS

EXPOSURE VARIABLES

Until now, we have considered logistic regression models for binary or categorical

exposure variables. For binary variables, logistic regression estimates the odds

ratio comparing the two exposure groups, while for categorical variables we have

seen how to estimate odds ratios for each non-baseline group compared to the

baseline. This approach does not take account of ordering of the exposure vari-

able. For example, we did not use the fact that subjects aged � 40 years are older

than those aged 20–39 years, who in turn are older than those aged 10–19 years

and so on.

Example 19.3

The odds of microfilarial infection in each age group in the onchocerciasis dataset

are shown in Table 19.9 in Section 19.4, and are displayed in Figure 19.1. We do

not have a straight line; the slope of the line increases with increasing age group. In

other words, this increase in the odds of infection with increasing age does not

appear to be constant.

However, Figure 19.2 shows that there is an approximately linear increase in the

log odds of infection with increasing age group. This log-linear increase means that

we are able to express the association between age and the log odds of microfilarial

infection by a single linear term (as described below) rather than by a series of

indicator variables representing the different groups.

Relation with linear regression models

Logistic regression models can be used to estimate the most likely value of the

increase in log odds per age group, assuming that the increase is the same in each

age group. (We will define the meaning of ‘most likely’ more precisely in Chapter
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Fig. 19.1 Odds of microfilarial infection according to age group for the onchocerciasis data.

Fig. 19.2 Log odds of microfilarial infection according to age group for the onchocerciasis data.
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28.) The model is analogous to the simple linear regression model described in

Chapter 11. If we assume that:

y ¼ �0 þ �1x

then the intercept �0 is the value of y when x ¼ 0, and the slope �1 represents the

increase in y when x increases by 1. Logistic regression models assume that:

log odds ¼ �0 þ �1x

so that the intercept �0 is the value of the log odds when x ¼ 0, and the slope

�1 represents the increase in log odds when x increases by 1. We will use the

notation

log odds ¼ Baselineþ [X]

where the square brackets indicate our assumption that variable X has a linear

effect on the log odds of the outcome. For the onchocerciasis data, our model is

log odds ¼ Baselineþ [Agegrp]

Example 19.3 (continued)

Table 19.12(a) shows logistic regression output for the model assuming a linear

effect of logistic regression on the log odds of microfilarial infection. The esti-

mated increase in log odds for every unit increase in age group is 0.930 (95%

CI ¼ 0:805 to 1.055). This corresponds to an odds ratio per group of 2.534 (95%

CI ¼ 2:236 to 2.871; see output in Table 19.12b). The constant term corresponds

to the estimated log odds of microfilarial infection in age group 0 (5–9 years,

log odds ¼ �1:115), assuming a linear relation between age group and the log odds

of infection. It does not therefore numerically equal the baseline term in the

Table 19.12 Logistic regression output for the linear association between the log odds of

microfilarial infection and age group (data in Table 19.9).

(a) Output on log scale.

Coefficient s.e. z P > jzj 95% CI

Age group 0.930 0.0638 14.587 0.000 0.805 to 1.055

Constant �1.115 0.127 �8.782 0.000 �1.364 to �0.866

(b) Output on ratio scale.

Odds ratio z P > jzj 95% CI

Age group 2.534 14.587 0.000 2.236 to 2.871
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Table 19.13 Predicted log odds in each age group, derived from a logistic regression model assuming a linear

relationship between the log odds of microfilarial infection and age group.

Age group Logistic regression equation Predicted log odds

0 log odds ¼ constantþ 0� age group �1:115þ 0:930� 0 ¼ �1:115

1 log odds ¼ constantþ 1� age group �1:115þ 0:930� 1 ¼ �0:185

2 log odds ¼ constantþ 2� age group �1:115þ 0:930� 2 ¼ 0:745

3 log odds ¼ constantþ 3� age group �1:115þ 0:930� 3 ¼ 1:674

regression equation when age is included as a categorical variable, as described in

Section 19.4.

Substitution of the estimated regression coefficients into the logistic regression

equation gives the predicted log odds in each age group. These are shown in Table

19.13. Figure 19.3 compares these predicted log odds from logistic regression with

the observed log odds in each group. This shows that the linear assumption gives a

good approximation to the observed log odds in each group. Section 29.6 des-

cribes how to test such linear assumptions.

Fig. 19.3 Observed log odds in each age group (circles) and predicted log odds from logistic regression

(triangles, connected by line).
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20.1 INTRODUCTION

In the last chapter we introduced the principles of logistic regression models, and

described how to use logistic regression to examine the effect of a single exposure

variable. We now describe how these models can be extended to control for the

confounding effects of one or more additional variables. In addition, we briefly

cover regression modelling for risk ratios, rather than odds ratios, and for out-

comes with more than two levels.

20.2 CONTROLLING FOR CONFOUNDING USING LOGISTIC

REGRESSION

In Chapter 18 we saw how to control for a confounding variable by dividing the

sample into strata defined by levels of the confounder, and examining the effect of

the exposure in each stratum. We then used the Mantel–Haenszel method to

combine the odds ratios from each stratum into an overall summary odds ratio.

We also explained how this approach assumes that effect modification (inter-

action) is not present, i.e. that the true odds ratio comparing exposed with

unexposed individuals is the same in each stratum. We now see how making the

same assumption allows us to control for confounding using logistic regression.

We will explain this in the context of the onchocerciasis dataset used throughout

Chapter 19. Recall that we found strong associations of both area of residence

and of age group with the odds of microfilarial (mf ) infection. If the age distribu-

tions differ in the two types of area, then it is possible that age is a confounding

variable for the association between area and mf infection. We will control for

this possible confounding by fitting a logistic regression model, which includes

the effects of both area and age group. We will start with hypothetical data,

constructed so that it is easy to see how this logistic regression model works.

We will then explain how to interpret the output when we apply the model to the

real data.
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Example 20.1 (hypothetical data)

Table 20.1 shows hypothetical data for the odds of mf infection according to area

of residence (exposure) and age group. You can see that:

1 Table 20.1(a) shows that the exposure effect is exactly the same in each of the

age groups; the age-specific odds ratios comparing exposed with unexposed

individuals are all equal to 3.0. (Note also that when the age groups are

combined, the crude odds ratio is 1.86/0.92¼ 2.02, which is considerably less

than the individual age-specific odds ratios of 3, confirming that age group

confounds the association between mf infection and area.)

2 Table 20.1(b) shows that the age group effect is exactly the same in each area

of residence. For example, the odds ratio comparing age group 1 with age group

0 in the savannah areas is 0.5/0.2¼ 2.5, the same as the odds ratio in the forest

areas (1.5/0.6¼ 2.5). Similarly, the odds ratio comparing age group 2 with age

group 0 are 10 in each area, and the odds ratios comparing age group 3 with

age group 0 are 15 in each area.

Table 20.1 Hypothetical data for the odds of mf infection, according to area of residence and age group.

(a) Crude data, and odds of disease in each group (d ¼ number infected and h ¼ number uninfected), plus odds

ratios for area in each age-group and overall.

Age group

Savannah areas (Unexposed) Rainforest areas (Exposed)
Odds ratio for

area effectd/h Odds d/h Odds

0 20/100 0.2 30/50 0.6 3.0

1 40/80 0.5 60/40 1.5 3.0

2 80/40 2.0 60/10 6.0 3.0

3 90/30 3.0 45/5 9.0 3.0

All age groups combined 230/250 0.92 195/105 1.86 2.02

(b) Age group odds ratios (comparing age groups 1, 2 and 3 with age group 0), in

each type of area of residence.

Odds ratios for age group effects

Age group Savannah areas Rainforest areas

0 1.0 1.0

1 2.5 (¼ 0:5=0:2) 2.5 (¼ 1:5=0:6)

2 10.0 (¼ 2:0=0:2) 10.0 (¼ 6:0=0:6)

3 15.0 (¼ 3:0=0:2) 15.0 (¼ 9:0=0:6)

These two facts mean that we can exactly express the odds of mf infection in the

eight area–age subgroups in terms of the following five parameters, as shown in

Table 20.2(a):

1 0.2: the odds of mf infection at the baseline values of both area and age group;

2 3.0: the area odds ratio comparing the odds of infection in rainforest areas

compared to savannah areas; and
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3 2.5, 10.0 and 15.0: the three age odds ratios comparing age groups 1, 2 and 3

with age group 0 (respectively).

Table 20.2(b) shows the corresponding equations in terms of the parameter names;

these follow the convention we introduced in Chapter 19. These equations define

the logistic regression model for the effects of area and age group on the odds of mf

infection. As described in Chapter 19, such a logistic regression model can be

abbreviated to:

Odds ¼ Baseline�Area�Agegrp

As explained in Section 19.2, it is a multiplicativemodel for the joint effects of area

and age group. Note that the Baseline parameter now refers to the odds of the

disease at the baseline of both variables. This model assumes that the odds ratio for

area is the same in each age group and that the odds ratios for age group are the same

in each area, i.e. that there is no interactionbetween the effects of area and age group.

Table 20.2 Odds of mf infection by area and age group, expressed in terms of the parameters of

the logistic regression model: Odds¼ Baseline �Area�Age group.

(a) Expressed in terms of the parameter values.

Odds of mf infection

Age group Savannah areas (Unexposed) Rainforest areas (Exposed)

0 0.2¼ 0.2 0.6¼ 0.2� 3.0

1 0.5¼ 0.2� 2.5 1.5¼ 0.2� 3.0� 2.5

2 2.0¼ 0.2� 10.0 6.0¼ 0.2� 3.0� 10.0

3 3.0¼ 0.2� 15.0 9.0¼ 0.2� 3.0� 15.0

(b) Expressed in terms of the parameter names.

Odds of mf infection

Age group Savannah areas (Unexposed) Rainforest areas (Exposed)

0 Baseline Baseline� Area

1 Baseline�Agegrp(1) Baseline� Area�Agegrp(1)

2 Baseline�Agegrp(2) Baseline� Area�Agegrp(2)

3 Baseline�Agegrp(3) Baseline� Area�Agegrp(3)

(c) Expressed on a log scale, in terms of the parameter names.

Log odds of mf infection

Age group Savannah areas (Unexposed) Rainforest areas (Exposed)

0 log(Baseline) log(Baseline)þ log(Area)

1 log(Baseline)þ log(Agegrp(1) ) log(Baseline)þ log(Area)þ log(Agegrp(1) )

2 log(Baseline)þ log(Agegrp(2) ) log(Baseline)þ log(Area)þ log(Agegrp(2) )

3 log(Baseline)þ log(Agegrp(3) ) log(Baseline)þ log(Area)þ log(Agegrp(3) )
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As explained in Chapter 19, the calculations to derive confidence intervals and

P-values for the parameters of logistic regression models are done on the log scale,

in which case the baseline parameter refers to the log odds in the baseline group,

and the other parameters refer to log odds ratios. The effects of the exposure

variables are additive on the log scale (as described in Section 19.2). Table 20.2(c)

shows the equations for the log odds in each of the area–age subgroups. The

corresponding logistic regression model, defined by these eight equations, is:

log(Odds) ¼ log(Baseline)þ log(Exposure)þ log(Age)

Example 20.2 (real data)

In our hypothetical example, we were able to precisely express the odds in the eight

sub-groups in the table in terms of five parameters, because we created the data so

that the effect of area was exactly the same in each age group, and the effect of age

exactly the same in savannah and rainforest areas. Of course, sampling variation

means that real data is never this neat, even if the model proposed is correct. Table

20.3 shows the odds ofmf infection in the eight area–age subgroups, using the data

that were actually observed in the onchocerciasis study.

Table 20.3 Odds of microfilarial infection and odds ratios comparing individuals living in

forest areas with those living in savannah areas, separately for each age group.

Area of residence

Age group Savannah Rainforest Odds ratio for area

0 (5–9 years) 16/77¼ 0.208 30/79¼ 0.380 1.828

1 (10–19 years) 22/50¼ 0.440 77/69¼ 1.116 2.536

2 (20–39 years) 123/85¼ 1.447 176/40¼ 4.400 3.041

3 (� 40 years) 120/55¼ 2.182 258/25¼ 10.32 4.730

From the previous chapter (Table 19.4) we know that the crude odds ratio for

area is 2.413 (the odds ratio which does not take into account the effects of age

group, or any other variables). We can see in Table 20.3 that in three out of the

four age groups the stratum-specific odds ratios for the effect of area of residence

are larger than this. If we use Mantel–Haenszel methods (see Chapter 18) to

estimate the effect of area of residence controlling for age group, we obtain an

estimated odds ratio of 3.039 (95% CI ¼ 2.310 to 3.999). This is noticeably larger

than the crude odds ratio of 2.413.

As in the hypothetical example above, we can express the odds ofmf infection in

the rainforest areas in terms of the odds ratios for the effect of area of residence in

each age group (Table 20.4a). Alternatively, we can express the odds of mf

infection in terms of the odds ratios for each of the three age groups compared

to age group 0 (Table 20.4b). Note that (in contrast to the hypothetical example

above) these sets of odds ratios are not exactly the same in each area. This means

that we cannot calculate the parameter estimates directly from the raw data, as we
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Table 20.4 Odds of mf infection, according to area of residence and age

group, for the data observed in the onchocerciasis study.

(a) With the odds in the rainforest areas expressed in terms of the age-specific

odds ratios for the association between area and infection.

Area

Age group Savannah Rainforest

0 (5–9 years) 0.208 0.208� 1.828

1 (10–19 years) 0.440 0.440� 2.536

2 (20–39 years) 1.447 1.447� 3.041

3 ( � 40 years) 2.182 2.182� 4.730

(b) With the odds of infection in age groups 2 to 4 expressed in terms of the

area-specific odds ratios for the association between age group and infection.

Area

Age group Savannah Rainforest

0 (5–9 years) 0.208 0.380

1 (10–19 years) 0.208� 2.118 0.380� 2.939

2 (20–39 years) 0.208� 6.964 0.380� 11.59

3 (� 40 years) 0.208� 10.50 0.380� 27.18

could for the simpler examples in Chapter 19. Instead we use a computer package

to fit the model and to estimate the most likely values for the effect of area

controlling for age group, and the effect of age group controlling for area, on the

basis of the assumption that there is no interaction between the effects of

the two variables. The meaning of ‘most likely’ is explained more precisely in

Chapter 28.

The computer output from this model (on the odds ratio scale) is shown in

Table 20.5. The estimated odds ratio of 3.083 (95% CI¼ 2.354 to 4.038) for area

controlling for age group is very close to that derived using the Mantel–Haenszel

method (OR 3.039, 95% CI¼ 2.310 to 3.999), and again is noticeably larger than

Table 20.5 Logistic regression output for the model for mf infection, including both

area of residence and age group.

Odds ratio z P > jzj 95% CI

Area 3.083 8.181 0.000 2.354 to 4.038

Agegrp(1) 2.599 4.301 0.000 1.682 to 4.016

Agegrp(2) 9.765 10.944 0.000 6.493 to 14.69

Agegrp(3) 17.64 13.295 0.000 11.56 to 26.93

Constant* 0.147 �9.741 0.000 0.100 to 0.217

*Constant (baseline odds) ¼ estimated odds of mf infection for 5–9 year

olds living in the savannah areas, assuming no interaction between the effects

of area and age group.
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Fig. 20.1 Observed odds of mf infection in the eight area–age subgroups, together with lines showing the

predicted odds from the logistic regression model defined in Table 20.2(b).

the crude odds ratio of 2.413. Thus the confounding effect of age meant that the

crude odds ratio for area was too small.

We can use the parameter estimates shown in Table 20.5 to calculate the predicted

odds in each group, using the equations for the odds in this logistic regression

model, shown in Table 20.2(b). These calculations are shown in Table 20.6.

Figure 20.1 compares the observed odds of mf infection in the eight area–

age subgroups (shown in Table 20.3) with the predicted odds from the logistic

regression model (shown by separate lines for the savannah and rainforest). The

odds are plotted on a log scale; this means that, since the model assumes that the

area odds ratios are the same in each age group, the two lines showing the predicted

odds are parallel.

Table 20.6 Odds of mf infection by area and age group, as estimated from the logistic

regression model.

Odds of mf infection

Age group Savannah areas Rainforest areas

0 (5–9 years) 0.147 0:147� 3:083 ¼ 0:453

1 (10–19 years) 0:147� 2:599 ¼ 0:382 0:147� 3:083� 2:599 ¼ 1:178

2 (20–39 years) 0:147� 9:765 ¼ 1:435 0:147� 3:083� 9:765 ¼ 4:426

3 (� 40 years) 0:147� 17:64 ¼ 2:593 0:147� 3:083� 17:64 ¼ 7:993
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20.3 TESTING FOR INTERACTION, AND MORE COMPLEX LOGISTIC

REGRESSION MODELS

We have explained the interpretation of logistic regression models for one and two

variables in great detail. The extension to models for more than two variables is

straightforward, and the interpretation of results follows the same principles.

Regression modelling, including hypothesis testing, examining interaction be-

tween variables and modelling dose–response relationships, is described in more

detail in Chapter 29. For now we note two important points:

1 In the logistic regression model for two variables (area and age group) described

above, we assumed that the effect of each was the same regardless of the level of

the other. In other words, we assumed that there was no interaction between the

effects of the two variables. Interaction (also known as effect modification) was

described in Chapter 18. It is straightforward to use regression modelling to

examine this; see Section 29.5 for details.

2 Similarly, when we include three or more variables in a logistic regression model,

we assume that there is no interaction between any of them. On the basis of this

assumption, we estimate the effect of each, controlling for the effect of all the

others.

More information about logistic regression models may be found in Hosmer and

Lemeshow (2000).

20.4 REGRESSION ANALYSIS OF RISK RATIOS

Most regression analyses of binary outcomes are conducted using odds ratios:

partly because of the mathematical advantages of analyses based on odds ratios

(see Section 16.6) and partly because computer software to do logistic regression

analyses is so widely available. However, it is straightforward to do regression

analyses of risk ratios, if it is considered important to express exposure effects in

that way.

This is carried out by relating the effect of the exposure variable(s) to the log of the

risk of the outcome rather than the log of the odds, using a statistical software

package that allows the user to fit generalized linear models (see Chapter 29) for a

range of outcome distributions and a range of what are known as link functions. For

logistic regression the outcome variable is assumed to have a binomial distribution

(see Chapter 15) and the link function is the logit function logit(�) ¼ log[�=(1� �)]

(see Section 19.3). Tomodel exposure effects as risk ratios instead of odds ratios, we

simply specify a log link function (log �) instead of a logit link function. The

outcome distribution is still binomial. The model is:

log (risk of outcome) ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp
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If the outcome is rare then odds ratios are approximately the same as risk ratios

(see Section 16.6) and so the choice of odds ratio or risk ratio as the measure of

exposure effect is unimportant. When the outcome is common, the two measures

are different, and as stated in Section 16.6, it is important that odds ratios are not

misinterpreted as risk ratios. The problem with the regression analysis of risk

ratios is that when the outcome is common, it can prove difficult to fit models

based on risk ratios, because they are constrained (see Section 16.6); this means

that computer model-fitting routines often fail to produce results. Furthermore,

exposure effects will differ depending on whether the presence or absence of the

outcome event is considered as the outcome. For these reasons, it is likely that

logistic regression will continue to be the method of choice for the regression

analysis of binary outcome variables.

20.5 OUTCOMES WITH MORE THAN TWO LEVELS

Finally, we briefly describe extensions to logistic regression that may be used for

categorical outcomes with more than two categories. In Chapter 2 we distin-

guished between categorical variables such as ethnic group, for which there is no

natural ordering of the categories, and ordered categorical variables such as social

class, in which the different categories, though non-numerical, have a natural

ordering. We will briefly introduce the regression models appropriate for each of

these types of outcome variable. We will denote the outcome variable by y, and

assume that y has k possible categories.

Multinomial logistic regression

Multinomial logistic regression, also known as polychotomous logistic regression,

extends logistic regression by estimating the effect of one or more exposure

variables on the probability that the outcome is in a particular category. For

example, in a study of risk factors for asthma the outcome might be defined as no

asthma, allergic asthma and non-allergic asthma. One of the outcome levels is

chosen as the comparison level, and (k� 1) regression coefficients, corresponding

to each other outcome level, are estimated for each exposure variable in the

regression model. If there are only two outcome levels the model is identical to

standard logistic regression. However, when the outcome hasmore than two levels,

interpretation of the regression coefficients is less straightforward than for logistic

regression, because the estimated effect of an exposure variable is measured by the

combined effects of (k� 1) regression coefficients.

Ordinal logistic regression

Ordinal logistic regression is an extension of logistic regression which is appropri-

ate when the outcome variable is ordered categorical. For example, in a study of

risk factors for malnutrition the outcome might be classified as severe, moderate,
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mild, or no malnutrition. The most commonly used type of model is the propor-

tional odds model, whose parameters represent the exposure odds ratios for being

in the highest j categories compared to the lowest (k� j) categories. For example,

if there were four outcome categories and a single exposure variable, then the

exposure odds ratio would represent the combined comparison of outcome:

category 4 with categories 3, 2 and 1, categories 4 and 3 with categories 2 and 1,

and categories 4, 3 and 2 with category 1. It is assumed that the effect of exposure

is the same for all such splits of the categories of the outcome variable. Some

statistical software packages provide tests of this assumption, others do not.

Other, less commonly used models for ordered categorical outcome variables

include the continuation ratio model and the stereotype model.

Further reading

Regression models for categorical variables with more than two levels are de-

scribed by Agresti (1996). Models for ordered categorical outcome variables have

been reviewed by Armstrong and Sloan (1989), and Ananth and Kleinbaum

(1997).
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21.1 INTRODUCTION

In this chapter we introduce methods for studies in which we have binary outcome

observations that are matched or paired in some way. The two main reasons why

matching occurs are:

1 When the outcome is observed on the same individual on two separate occa-

sions, under different exposure (or treatment) circumstances, or using two

different methods.

2 The study has used a matched design in selecting individuals. This mainly occurs

with case–control studies; each case (subjects with the disease) is matched with

one or more controls (subjects without the disease), deliberately chosen to have

the same values for major confounding variables. For example, controls might

be selected because they are of similar age to a case, or because they live in the

same neighbourhood as the case. We will discuss case–control studies in more

detail in Chapter 34, where we will see that matched designs often have few

advantages, and may have serious disadvantages, compared to unmatched

designs. It is also very occasionally used in clinical trials, for example in a trial

comparing two treatments for an eye condition, the two treatments may be

randomly assigned to the left and right eyes of each patient.

It is essential that the matching be allowed for in the analysis of such studies.

21.2 COMPARISON OF TWO PROPORTIONS: PAIRED CASE

Example 21.1

Consider the results of an experiment to compare the Bell and Kato–Katz methods

for detectingSchistosomamansoni eggs in faeces inwhich two subsamples from each

of 315 specimens were analysed, one by each method. Here, the exposure is the type

ofmethod, and the outcome is the test result. The correct way to analyse such data is

to consider the results of each pair of subsamples. For any pair there are four

CHAPTER 21

Matched studies

21.1 Introduction

21.2 Comparison of two proportions:

paired case

z-test for difference between

proportions

21.3 Using odds ratios for paired data

McNemar’s chi-squared test

Validity

21.4 Analysing matched case–control

studies

21.5 Conditional logistic regression

Examining the effect of a single

exposure variable

Controlling for confounders, additional

to those used for matching



Table 21.1 Possible results when a pair of subsamples is tested using two

methods for detecting Schistosoma mansoni eggs.

Notation Description

Both tests positive

Both tests negative Concordant pairs

Bell positive, Kato–Katz negative r Discordant pairs
Kato–Katz positive, Bell negative s

possible outcomes, as shown in Table 21.1. The results for each of the 315 specimens

(pairs of subsamples) are shown in Table 21.2(a). Note that it would be incorrect to

arrange the data as in Table 21.2(b) and to apply the standard chi-squared test, as

this would take no account of the paired nature of the data, namely that it was the

same 315 specimens examined with each method, and not 630 different ones.

One hundred and eighty-four specimens were positive with both methods and 63

were negative with both. These 247 specimens (the concordant pairs; see Table 21.1)

therefore give us no information about which of the two methods is better at

detecting S. mansoni eggs. The information we require is entirely contained in the

68 specimens for which themethods did not agree (the discordant pairs). Of these, 54

were positive with the Bell method only, compared to 14 positive with the Kato–

Katz method only.

Table 21.2 Comparison of Bell and Kato–Katz methods for detecting Schistosoma mansoni eggs in faeces. The

same 315 specimens were examined using each method. Data from Sleigh et al. (1982) Transactions of the Royal

Society of Tropical Medicine and Hygiene 76: 403–6 (with permission).

(a) Correct layout. (b) Incorrect layout.

Kato–Katz Results

þ � Total þ � Total

Bell
þ 184 54(r) 238 Bell 238 77 315

� 14(s) 63 77 Kato–Katz 198 117 315

Total 198 117 315 Total 436 194 630

The proportions of specimens found positive with the two methods were 238/315

(0.756) using the Bell method and 198/315 (0.629) using the Kato–Katz method.

The difference between the proportions was therefore 0.1270. This difference can

also be calculated from the numbers of discordant pairs, r and s, and the total

number of pairs, n:

Difference between paired proportions ¼ r� s

n
,

s:e:(difference) ¼ (rþ s)
p

n
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In this example, the difference between the paired proportions is (r� s)=n ¼
(54� 14)=315 ¼ 0:1270, the same as calculated above. Its standard error equals

[ (
p

rþ s)]=n ¼ 6
p

8=315 ¼ 0:0262. An approximate 95% confidence interval can be

derived in the usual way:

95% CI ¼ 0:1270� (1:96� 0:0262) to 0:1270þ (1:96� 0:0262)

¼ 0:0756 to 0:1784

With 95% confidence, the positivity rate is between 7.6% and 17.8% higher if

the Bell method is used to detect S. mansoni eggs than if the Kato–Katz method is

used.

z-test for difference between proportions

If there was no difference in the abilities of the methods to detect S. mansoni eggs,

we would not of course expect complete agreement since different subsamples

were examined, but we would expect on average half the disagreements to be

positive with the Bell method only and half to be positive with the Kato–Katz

method only. Thus an appropriate test of the null hypothesis that there is no

difference between the methods is to compare the proportion found positive with

the Bell method only, namely 54/68, with the hypothetical value of 0.5. This may

be done using the z test, as described in Section 15.6. As usual, we construct the

test by dividing the difference by its standard error assuming the null hypothesis to

be true, which gives:

z ¼ 54=68� 0:5

(
p

0:5� 0:5=68)
¼ 4:85, P < 0:001

There is strong evidence that the Bell method is more likely to detect S. mansoni

eggs than the Kato–Katz method. (Note that other than for the sign of the z

statistic exactly the same result would have been obtained had the proportion

positive with the Kato–Katz method only, namely 14/68, been compared with 0.5.)

21.3 USING ODDS RATIOS FOR PAIRED DATA

An alternative approach to the analysis of matched pairs is to estimate the odds

ratio comparing the Bell and Kato–Katz methods. Again, our analysis must take

the pairing into account. This can be done using Mantel–Haenszel methods (see

Section 18.4), with the data stratified into the individual pairs. Using the same

notation as in Chapter 18, the notation for the ith pair is shown in Table 21.3. The

Mantel–Haenszel estimate of the odds ratio (see Chapter 18) is given by:

ORMH ¼
�
d1i � h0i

ni

�
d0i � h1i

ni
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Table 21.3 Notation for the ‘stratified’ 2� 2 table giving the results for pair i.

Outcome

þ � Total

Bell method d1i h1i 1

Kato–Katz method d0i h0i 1

Total di hi 2

As in the last section, the analysis can be simplified if we note that there are only

four possible outcomes for each pair, and therefore only four possible types of

2� 2 table. These are shown in Table 21.4, together with their contributions to the

numerator and denominator in the formula for the Mantel–Haenszel OR. This

shows that, again, only the discordant pairs contribute to the Mantel–Haenszel

estimate of the odds ratio. The total for the numerator is r/2, while the total for the

denominator is s/2. The estimated odds ratio is therefore:

ORMH ¼ r=2

s=2
¼ r

s
, the ratio of the numbers of discordant pairs

Table 21.4 Possible outcomes for each pair, together with their contributions to the numerator and

denominator in the formula for the Mantel–Haenszel estimate of the odds ratio.

Concordant pairs Discordant pairs

þ � þ � þ � þ �

Bell 1 0 0 1 1 0 0 1

Kato–Katz 1 0 0 1 0 1 1 0

Number of pairs r s

d1i � h0i
ni

0 0 ½ 0

d0i � h1i
ni

0 0 0 ½

An approximate 95% error factor for the odds ratio is given by:

EF ¼ exp[1:96� (
p

1=rþ 1=s)]

In the example, the estimated odds ratio is given by 54=14 ¼ 3:857, while the error

factor is exp [1:96� (
p

1=54þ 1=14)] ¼ 1:800. The approximate 95% confidence

interval is therefore given by:
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95% CI ¼ OR=EF to OR� EF ¼ 3:857=1:800 to 3:857� 1:800 ¼ 2:143 to 6:943

McNemar’s chi-squared test

A chi-squared test, based on the numbers of discordant pairs, can also be derived

from the formula for the Mantel–Haenszel statistic presented in Chapter 18 and is

given by:

�2
paired ¼ (r� s)2

rþ s
, d:f : ¼ 1

This is known as McNemar’s chi-squared test. In the example x2 ¼ (54� 14)2

=(54þ 14) ¼ 402=68 ¼ 23:53, d:f : ¼ 1,P < 0:001. Apart from rounding error,

this x2 value is the same as the square of the z value obtained above

(4:852 ¼ 23:52), the two tests being mathematically equivalent.

Validity

The use of McNemar’s chi-squared test or the equivalent z test is valid provided

that the total number of discordant pairs is at least 10. The approximate error

factor for the 95% CI for the odds ratio is valid providing that the total number of

pairs is greater than 50. If these conditions are not met then methods based on

exact binomial probabilities should be used (these are described by Alman et al.

2000).

21.4 ANALYSING MATCHED CASE–CONTROL STUDIES

The methods described above can also be used for the analysis of case–control

studies and clinical trials which have employed a matched design, as described in

the introduction. The rationale for this and the design issues are discussed in more

detail in Chapter 34.

Example 21.2

Table 21.5 shows data from a study to investigate the association between use of

oral contraceptives and thromboembolism. The cases were 175 women aged 15–44

discharged alive from 43 hospitals after initial attacks of thromboembolism. For

each case a female patient suffering from some other disease (thought to be

unrelated to the use of oral contraceptives) was selected from the same hospital

to act as a control. She was chosen to have the same residence, time of hospital-

isation, race, age, marital status, parity, and income status as the case. Participants

were questioned about their past contraceptive history, and in particular
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Table 21.5 Results of a matched case–control study, showing the association between

use of oral contraceptives (OC) and thromboembolism. With permission from Sartwell et al.

(1969) American Journal of Epidemiology 90: 365–80.

Controls

OC used OC not used Total

Cases
OC used 10 57 67

OC not used 13 95 108

Total 23 152 175

OR ¼ 57=13 ¼ 4:38

about whether they had used oral contraceptives during the month before they

were admitted to hospital.

The pairing of the cases and controls is preserved in the analysis by comparing

oral contraceptive use of each case against oral contraceptive use of their matched

control. There were ten case–control pairs in which both case and control had

used oral contraceptives and 95 pairs in which neither had. These 105 concordant

pairs give no information about the association. This information is entirely

contained in the 70 discordant pairs in which the case and control differed.

There were 57 case–control pairs in which only the case had used oral contracep-

tives within the previous month compared to 13 in which only the control had

done so. The odds ratio is measured by the ratio of these discordant pairs and

equals 4.38, which suggests oral contraceptive use leads to a substantial increase in

the risk of thromboembolism.

OR¼ ratio of discordant pairs

¼ no: of pairs in which case exposed, control not exposed

no: of pairs in which control exposed, case not exposed

The error factor is exp[1:96� (1=57þ 1=13)
p

] ¼ 1:827. The 95% CI for the odds

ratio is therefore 4.38/1.827 to 4:38� 1:827, which is 2.40 to 8.01. McNemar’s �2

test gives: �2 ¼ (57� 13)2=(57þ 13) ¼ 27:7,P < 0:001, corresponding to strong

evidence against the null hypothesis that there is no association.

If several controls rather than a single matched control are selected for each

case, the odds ratio can still be estimated by using Mantel–Haenszel methods.

However, these methods are severely limited because they do not allow for further

stratification on confounding variables which were not also matching variables.

The solution to this problem is to use conditional logistic regression, which we

describe next.
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21.5 CONDITIONAL LOGISTIC REGRESSION

In general when analysing individually matched case–control studies we may wish

to control for confounding variables, additional to those matched for in the

design. This is done using conditional logistic regression, a variant of logistic

regression in which cases are only compared to controls in the same matched

set. In the simple case of individually-matched case–control studies with one

control per case and no further confounders, conditional logistic regression will

give identical results to the methods for paired data described earlier in the

chapter. However, additional confounders may be included in the model, and

there is no restriction on the numbers of cases and controls in each matched set.

Once the reader is familiar with the use of logistic regression, then conditional

logistic regression should present no additional difficulties. The only difference is

that in addition to the outcome and exposure variables, the computer software

requires a variable that specifies which case (or cases) matches which control (or

controls). Exposure effects are estimated by considering possible combinations of

exposures, conditional on the observed exposures within each matched set. For

example, if the set consists of one case and two controls, with only one of the set

exposed and the other two unexposed, then the three possible combinations are:

Case Control 1 Control 2

1 Exposed Unexposed Unexposed

2 Unexposed Exposed Unexposed

3 Unexposed Unexposed Exposed

It is because the possible combinations are conditional on the total number of

exposed and unexposed individuals in each matched set that the method is called

conditional logistic regression. This argument extends in a straightforward manner

to numeric exposure variables and to more than one exposure variable.

Example 21.3

Table 21.6 shows data from a matched case–control study of risk factors for

infant death from diarrhoea in Brazil [Victora et al. (1987) Lancet ii: 319–322],

in which an attempt was made to ascertain all infant deaths from diarrhoea

occurring over a one-year period in two cities in southern Brazil, by means of

weekly visits to all hospitals, coroners’ services and death registries in the cities.

Whenever the underlying cause of death was considered to be diarrhoea, a

physician visited the parents or guardians to collect further information about

the terminal illness, and data on possible risk factors. The same data were

collected for two ‘control’ infants. Those chosen were the nearest neighbour

aged less than 1 year, and the next nearest neighbour aged less than 6months.

This procedure was designed to provide a control group with a similar socio-

economic distribution to that of the cases. The selection also ensures
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Table 21.6 First 24 lines (eight case–control sets) of the dataset for the matched case–control

study of risk factors for infant death from diarrhoea in southern Brazil. Reproduced with kind

permission of C.G. Victora.

Observation

number case set water agegp bwtgp social income

1 1 1 0 2 3 1 3

2 0 1 1 3 4 2 2

3 0 1 1 2 3 1 3

4 1 2 1 1 2 1 2

5 0 2 1 3 4 2 3

6 0 2 1 2 4 1 2

7 1 3 1 2 3 2 2

8 0 3 1 5 3 2 4

9 0 3 1 1 3 2 4

10 1 4 1 3 3 1 2

11 0 4 1 4 3 1 3

12 0 4 1 2 4 1 2

13 1 5 1 2 2 2 2

14 0 5 1 4 2 2 2

15 0 5 1 1 2 2 3

16 1 6 1 2 3 2 2

17 0 6 1 4 4 1 2

18 0 6 1 2 3 1 2

19 1 7 1 2 1 1 2

20 0 7 1 4 3 1 2

21 0 7 1 2 4 1 2

22 1 8 1 3 3 1 3

23 0 8 1 5 2 1 2

24 0 8 1 2 4 1 1

that there are approximately twice as many controls less than 6months old, as

between 6–11months; this matches what was known concerning the age distribu-

tion of the cases. During the one-year study period, data were collected on 170

cases together with their 340 controls. In addition to variable case (1 ¼ case,

0 ¼ control), the dataset contains a variable set which gives the number (from

1 to 170) of the set to which each case and its two matched controls belong. Table

21.6 contains the first 24 lines (eight case–control sets) of this dataset.

Variable water denotes whether the child’s household had access to water in

their house or plot (water ¼ 1) or not (water ¼ 0). Variable agegp (age group) is

coded as 1 ¼ 0�1months, 2 ¼ 2�3months, 3 ¼ 4�5months, 4 ¼ 6�8months

and 5 ¼ 9�11months. Variable bwtgp (birth weight group, kg) has values

1 ¼ 1:50�2:49, 2 ¼ 2:50�2:99, 3 ¼ 3:00�3:49, 4 ¼� 3:50 kg. The final two vari-

ables are social (household social group) from 1 (most deprived) to 3 (least

deprived), and income (household income group) from 1 (least monthly income)

to 4 (most monthly income).
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Examining the effect of a single exposure variable

A total of 111 (65.3%) cases and 259 (76.2%) controls had access to water,

suggesting that access to water might be protective against infant death from

diarrhoea. Since this is a matched case–control study, the calculation of the odds

ratio for this exposure and all other analyses must take into account the matching.

Using Mantel–Haenszel methods stratified by set (170 strata, each containing

1 case and 2 controls) gives an estimated odds ratio of 0.275 (95% CI¼ 0.136 to

0.555). Access to water thus appears to be strongly protective against infant

diarrhoea death. Table 21.7 shows corresponding output from a conditional

logistic regression model (also stratifying on set for the effect of household

water supply). The estimated odds ratio is similar to that derived using Mantel–

Haenszel methods.

Table 21.7 Conditional logistic regression output (odds ratio scale) for the association

between household water supply and infant diarrhoea death in southern Brazil.

Odds ratio z P > jzj 95% CI

Water 0.2887 �3.67 0.000 0.1487 to 0.5606

A possible alternative approach to the analysis of such data is to fit a standard

logistic regression model, incorporating an indicator variable in the model corres-

ponding to each case–control set, as a way of controlling for the matching. It is

important to note, however, that for finely matched data this will give the wrong

answer, and that the odds ratios obtained will be further away from the null value

of 1 than they should be. For data in which the sets consist of exactly one case and

one control, the estimated odds ratio from such a model will be exactly the square

of the odds ratio estimated using Mantel–Haenszel methods stratified by set, or

using conditional logistic regression.

Controlling for confounders, additional to those used for matching

Since access to water may be associated with a household’s social status, we may

wish to control additionally for the effects of variables such as social and income.

Because there are only three subjects in each stratum, further stratification using

Mantel–Haenszel methods is not feasible. However, conditional logistic regression

allows us to control for the effects of confounding variables in addition to those

used in the matching. Table 21.8 shows output from a conditional logistic regres-

sion model, controlling for the effects of all the variables in Table 21.6. Here,

agegp(2) is an indicator variable (see Section 19.4) which takes the value 1 for

infants in age group 2 and 0 for infants in other age groups. However, the

corresponding odds ratio of 2.6766 cannot be interpreted as the odds of death in

age group 2 compared to age group 1, because age was used in the matching of

cases to controls. The odds ratio for the effect of water is only slightly increased

(closer to the null value of 1), so we would conclude that the additional variables
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Table 21.8 Conditional logistic regression output (odds ratio scale) for the association between

household water supply and infant diarrhoea death in southern Brazil, controlling for the effects

of potentially confounding variables.

Odds Ratio z P > jzj 95% CI

water 0.2991 �3.20 0.001 0.1427 to 0.6269

agegp(2) 2.6766 2.89 0.004 1.3719 to 5.2222

agegp(3) 2.4420 2.50 0.012 1.2121 to 4.9199

agegp(4) 3.2060 3.27 0.001 1.5940 to 6.4482

agegp(5) 0.8250 �0.43 0.666 0.3444 to 1.9758

bwtgp(2) 0.4814 �2.00 0.045 0.2354 to 0.9844

bwtgp(3) 0.4111 �2.52 0.012 0.2061 to 0.8199

bwtgp(4) 0.3031 �3.12 0.002 0.1431 to 0.6422

social(2) 0.9517 �0.21 0.830 0.6058 to 1.4951

social(3) 0.1527 �1.78 0.075 0.0192 to 1.2128

income(2) 0.7648 �0.85 0.394 0.4128 to 1.4170

income(3) 0.6970 �1.01 0.312 0.3459 to 1.4043

income(4) 0.6991 �0.86 0.389 0.3098 to 1.5774

included in the model had only a slight confounding effect, and that there is still a

clear protective effect of having a water supply in a household.
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PART D

LONGITUDINAL STUDIES: ANALYSIS
OF RATES AND SURVIVAL TIMES

In this part of the book we describe methods for the analysis of longitudinal

studies, that is studies in which subjects are followed over time. These may be

subdivided into three main types:

� cohort studies in which a group of individuals is followed over time, and the

incidence of one or more outcomes is recorded, together with exposure to one or

more factors

� survival studies in which individuals are followed from the time they experience a

particular event such as the diagnosis of disease, and the time to recurrence of

the disease or death is recorded

� intervention studies in which subjects are randomized to two or more interven-

tion or treatment groups (one of which is often a control group with no active

intervention or treatment or with standard care); the occurrence of pre-specified

outcomes is recorded

These different types of study are described in more detail in Chapter 34. Our

focus is on methods for their analysis, where the outcome of interest is binary, and

where:

1 individuals in the study are followed over different lengths of time, and=or

2 we are interested not only in whether or not the outcome occurs, but also the

time at which it occurs.

Note that for longitudinal studies in which everyone is followed for exactly the

same length of time, the methods described in Part C can be used if the outcome is

defined as the risk or odds of the event of interest. The exception is studies when

most subjects will experience the event of interest by the end of the follow-up. For

example, in a trial of a new treatment approach for lung cancer, even if every

patient were followed for 10 years, the focus would be on assessing whether the

new treatment had extended the survival time, rather than comparing the propor-

tion who survived in each group. This is because lung cancer has a very poor

prognosis; the probability of anyone surviving for more than 10 years is close to

zero.

In Chapter 22 we explain why variable follow-up times are common and the

special issues that arise in their analysis, and we define rates of disease and

mortality as the appropriate outcome measure. We then introduce the Poisson

distribution for the sampling distribution of a rate and derive a standard error of a

rate from it. In Chapter 23 we describe how to compare two rates, and how to

control for the effects of confounding using stratification methods, and in Chapter



24 the use of Poisson regression methods. In Chapter 25 we describe the use of

standardized rates to enable ready comparison between several groups. This part

of the book concludes with the group of methods known as survival analysis;

Chapter 26 covers the use of life tables, Kaplan–Meier estimates of survival curves

and log rank tests, and Chapter 27 describes Cox (proportional hazards) regres-

sion for the analysis of survival data. In contrast to the other methods for the

analysis of longitudinal studies presented earlier in this part, survival analysis

methods do not require the rate(s) to be constant during specified time periods.

We will assume throughout this part of the book that individuals can only

experience one occurrence of the outcome of interest. This is not the case where

the outcome of interest is a disease or condition that can recur. Examples are

episodes of diarrhoea, acute respiratory infection, malaria, asthma and myocar-

dial infarction, which individuals may experience more than once during the

course of the study. Although we can apply the methods described in this part

of the book by defining the outcome as the occurrence of one or more events, and

using the time until the first occurrence of the event, a more appropriate approach

is to use the methods presented in Chapter 31, which describes the analysis of

clustered data. The methods in Chapter 31 also apply to the analysis of longitu-

dinal studies in which we take repeated measures of a quantitative outcome variable,

such as blood pressure or lung function, on the same individual.
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22.1 INTRODUCTION

In this chapter we introduce the rate of event occurrence, as the outcome measure

for the analysis of longitudinal studies. We explain why variable follow-up times

happen, show how rates are estimated and discuss what they mean and how they

relate to the measure of event occurrence described in Part C. We then describe the

Poisson distribution for the sampling distribution of a rate, and use its properties to

derive confidence intervals for rates. In the next chapter we introduce two meas-

ures used to compare rates in different exposure groups; the rate ratio and the rate

difference.

22.2 CALCULATING PERIODS OF OBSERVATION (FOLLOW-UP TIMES)

In the majority of longitudinal studies, individuals are followed for different

lengths of time. Methods that take this into account are the focus of this part of

the book. Variable follow-up times occur for a variety of reasons:

� for logistic reasons, individuals may be recruited over a period of time but

followed to the same end date

� in an intervention or cohort study, new individuals may be enrolled during the

study because they have moved into the study area

� in a survival study, there may be a delay between the diagnosis of the event and

recruitment into the study

� some individuals may be lost to follow up, for example because of emigration

out of the study area or because they choose to withdraw from the study

� some individuals may die from causes other than the one that is the focus of

interest

� in studies where the population of interest is defined by their age, for example

women of child bearing age (ie. 15–44 years), individuals may move into or out

of the group during the study as they age.
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Fig. 22.1 Follow-up histories for 5 subjects in a study of mortality after a diagnosis of prostate cancer

(D¼ died, E¼ emigrated, W¼withdrew, � ¼ reached the end of follow-up without experiencing the

disease event).

Figure 22.1 depicts an example from a study of prostate cancer, which shows that

subjects were recruited to the study at varying times after diagnosis and exited at

different points in time. Only subject 3 was followed for the full 5 years: subjects 2

and 5 died, subject 1 emigrated and subject 4 withdrew from the study. Survival

times for subjects who are known to have survived up to a certain point in time,

such as subjects 1 and 4, but whose survival status past that point is not known,

are said to be censored.

An individual’s period of observation (or follow-up time) starts when they join

the study and stops when they experience the outcome, are lost to follow-up, or

the follow-up period ends, whichever happens first. This is the time during which,

were they to experience an event, the event would be recorded in the study. This

period is also called the period at risk. It is often measured in years, when it is

called person-years-at-risk or pyar.

The occurrence and timings of outcome events, losses to follow-up, and recruit-

ment of new participants are most accurately determined through regular surveil-

lance of the study population. In some countries this may be possible using

national databases, for example of deaths or cancer events, by ‘flagging’ the

subjects under surveillance in the study so that the occurrence of events of interest

can be routinely detected. In other settings it may be necessary to carry out

community-based surveillance. For logistic simplicity, and cost considerations,

this is sometimes carried out by conducting just two cross-sectional surveys, one at

the beginning and one at the end of the study period, and enquiring about changes

in the intervening period. If the exact date of an outcome event, loss to follow-up,
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or new recruitment cannot be determined through questioning, it is usually

assumed to have occurred half-way through the interval between the surveys.

Using statistical computer packages to calculate periods of follow-up

When analysing longitudinal studies, it is important to choose a statistical com-

puter package that allows easy manipulation of dates. Many packages provide a

facility for automatic recoding of dates as the total number of days that have

elapsed since the start of the Julian calendar, or from a chosen reference date such

as 1=Jan=1960. Thus, for example, 15=Jan=1960 would be coded as 14,

2=Feb=1960 as 32, 1=Jan=1959 as �365 and so on. It is then easy to calculate

the time that has elapsed between two dates. If the recoded variables are startdate

and exitdate, and since (taking leap years into account) there are on average

365.25 days in a year, the follow-up time in years is given by:

Follow-up time in years ¼ (exitdate� startdate)=365:25

22.3 RATES

The rate of occurrence of an outcome event measures the number of new events

that occur per person per unit time, and is denoted by the Greek letter l (lambda).

Some examples of rates are:

� In the UK, the incidence rate of prostate cancer is 74.3=100 000 men=year. In

other words, 74.3 new cases of prostate cancer are detected among every 100 000

men each year

� In the UK, the mortality rate from prostate cancer is 32.5=100 000 men=year. In

other words 32.5 out of every 100 000 men die from prostate cancer each year

� In the UK, the incidence rate of abortions among teenage girls aged 16–19 years

rose from 6.1=1000 girls=year in 1969 to 26.0=1000 girls=year in 1999

The rate is estimated from study data by dividing the total number (d ) of events

observed by the total (T ) of the individual person-years of observation.

Rate, l ¼ number of events

total person-years of observation
¼ d

T

Note that the sum, T, of the individual person-years is equivalent to the average

number of persons under observation multiplied by the length of the study.

The rate is also known as the incidence rate (or incidence density) of the outcome

event, except when the outcome of interest is death, in which case it is called the

mortality rate. For rare events, the rate is often multiplied by 1000 (or even 10 000
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or 100 000) and expressed per 1000 (or 10 000 or 100 000) person-years-at-risk.

For a common disease such as diarrhoea or asthma, which may occur more than

once in the same person, the incidence rate measures the average number of

attacks per person per year (at risk). However, the standard methods for the

analysis of rates (described in this part of the book) are not valid when individuals

may experience multiple episodes of disease. We explain how to deal with this

situation in Chapter 31.

Example 22.1

Five hundred children aged less than 5 years living in a community in

rural Guatemala were enrolled in a study of acute lower respiratory infections.

Fifty-seven were hospitalized for an acute lower respiratory infection, after

which they were no longer followed in the study. The study lasted for 2 years,

but because of migration, the occurrence of infections, passing the age of 5,

and losses to follow-up, the number under surveillance declined with time and

the total child-years at risk was T ¼ 873 (i.e. an average population size of 436

over the 2 years). The rate of acute lower respiratory infections was therefore

estimated to be:

l ¼ 57=873 ¼ 0:0653 per child-year

This can also be expressed per 1000 child-years at risk, as:

l ¼ 57=873� 1000 ¼ 65:3 per 1000 child-years

Note that the estimated rate will be the same whether the child-years of follow-up

arise from following (for example) 1000 children for 1 year, 500 children for

2 years or 250 children for 4 years (and so on).

Understanding rates and their relationship with risks

The rate relates the number of new events to total observation time. This is in

contrast to the risk, or cumulative incidence (see Chapter 15), in which the number

of new events is related to the number at risk at the beginning of the observation

period; the longer the period of observation the greater the risk will be, since there

will be more time for events to occur. Measures of risk therefore contain an

implicit but not explicit time element.

Figure 22.2 illustrates the accumulation of new cases of a disease over a 5 year

period in a population initially disease free, for two somewhat different incidence

rates: (a) l ¼ 0:3=person=year, and (b) l ¼ 0:03/person=year. For ease of under-

standing, we are illustrating this assuming that the population remains constant

over the 5 years, and that there is complete surveillance; that is that there are no

losses to follow-up, and no migration either in or out.
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Fig. 22.2 A graphical representation of two follow-up studies which lasted for 5 years. In the top graph (a)

the rate of disease is 0.3=person=year, and the disease-free population declines exponentially with time. In

the bottom graph (b) the rate is 0.03=person=year, and the decline in the disease-free population is

approximately linear over the period of the study.
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The disease rate applies to the number of people disease-free at a particular

point in time. Understanding the effect of this is a bit like understanding the

calculation of compound interest rates. In Figure 22.2(a), the incidence rate is

high, and so the proportion of the population remaining disease free is changing

rapidly over time. The disease rate is therefore operating on an ever-diminishing

proportion of the population as time goes on. This means that the number of new

cases per unit time will be steadily decreasing.

In other words, although the disease rate is constant over time, the cumulative

incidence and risk do not increase at a constant pace; their increase slows down

over time. This is reflected by a steadily decreasing gradient of the graph showing

how the disease-free population is diminishing over time (or equivalently how the

number who have experienced the disease, that is the cumulative incidence, is

accumulating). It can be shown mathematically that when the rate is constant over

time, this graph is described by an exponential function, and that:

Proportion disease free at time t ¼ e�lt

Risk up to time t ¼ 1� e�lt

Average time to contracting the disease ¼ 1=l

In Figure 22.2(b), the incidence rate is low and so the proportion of the population

remaining disease-free decreases slowly over time. It remains sufficiently close to

one over the 5 years that the exponential curve is approximately linear, corres-

ponding to a constant increase of new cases (and therefore of risk) over time. In

fact when the value of l is very small, the risk is approximately equal to the rate

multiplied by the time:

When l is very small, risk up to time t � lt, so that

l � risk

t

Table 22.1 shows the values of the risks (up to 1, 2 and 5 years) that result from

these two very different rates. This confirms what we can see visually in Figure

22.2. For the high rate (l ¼ 0:3=person=year), the number of new cases per unit

time is steadily decreasing; the increase is always less than the rate because the size

of the ‘at risk’ population is decreasing rapidly. Thus at 1 year, the cumulative risk

is a bit less than the rate (0.26 compared to 0.3), at 2 years it is considerably less

than twice the rate (0.45 compared to 0.6), and so on. In contrast, for the low rate

(l ¼ 0:03=person=year), the number of new cases is increasing steadily, and the

risk increases by approximately 0.03=year.
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Table 22.1 Risks of disease up to 1, 2 and 5 years corresponding to rates of l ¼ 0:3/person/year, and

l ¼ 0:03=person=year.

Risk of disease

Rate of disease Over 1 year Over 2 years Over 5 years

0.3=person=year 1� e�0:3 ¼ 0:26 1� e�0:3�2 ¼ 0:45 1� e�0:3�5 ¼ 0:78

0.03=person=year 1� e�0:03 ¼ 0:03 1� e�0:03�2 ¼ 0:06 1� e�0:03�5 ¼ 0:14

We have demonstrated that when l is very small, the risk up to time t approxi-

mately equals lt. This is equivalent to the rate, l, being approximately equal to the

value of the risk per unit time (risk=t). We will now show that the value of risk=t

also gets close to the rate as the length of the time interval gets very small. This is

true whatever the size of the rate, and is the basis of the formal definition of a rate,

as the value of risk=t when t is very small.

l ¼ risk

t
, when t is very small

Table 22.2 illustrates this for the fairly high rate of l ¼ 0:3=person=year. Over

5 years, the risk per year equals 0.1554, just over half the value of the rate. If the

length of time is decreased to 1 year, the risk per year is considerably higher at

0.2592, but still somewhat less than the rate of 0.3 per year. As the length of time

decreases further, the risk per year increases; by one month it is very close to the

rate, and by one day almost equal to it.

Table 22.2 Risk of disease, and risk=t, for different lengths of time interval t, when the rate,

l ¼ 0:3=person=year.

Length of time interval, t

5 years 1 year

1month

(30 days) 1week 1 day 1 hour 1minute

t (years) 5 1 0.08219 0.01918 0.002740 0.0001142 0.000001900

risk ¼ 1� e�0:3t 0.7769 0.2592 0.02436 0.005737 0.0008216 0.00003420 0.0000005710

risk=t 0.1554 0.2592 0.2963 0.2992 0.2999 0.3000 0.3000

22.4 THE POISSON DISTRIBUTION

We have already met the normal distribution for means and the binomial distri-

bution for proportions. We now introduce the Poisson distribution, named after

the French mathematician, which is appropriate for describing the number of

occurrences of an event during a period of time, provided that these events
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occur independently of each other and at random. An example would be the

number of congenital malformations of a given type occurring in a particular

district each year, provided that that there are no epidemics or specific environ-

mental hazards and that the population is constant from year to year (also see

Example 22.2).

The Poisson distribution is also appropriate for the number of particles found

in a unit of space, such as the number of malaria parasites seen in a microscope

field of a blood slide, provided that the particles are distributed randomly

and independently over the total space. The two properties of randomness and

independence must both be fulfilled for the Poisson distribution to hold. For

example, the number of Schistosoma mansoni eggs in a stool slide will not be

Poisson, since the eggs tend to cluster in clumps rather than to be distributed

independently.

After introducing the Poisson distribution in general for the number of events,

we will explain its application to the analysis of rates.

Definition of the Poisson distribution

The Poisson distribution describes the sampling distribution of the number of

occurrences, d, of an event during a period of time (or region of space). It depends

upon just one parameter, which is the mean number of occurrences, �, in periods

of the same length (or in equal regions of space).

Probability (d occurrences) ¼ e�� �d

d!

Note that, by definition, both 0! and �0 equal 1. The probability of zero occur-

rences is therefore e�� (e is the mathematical constant 2.71828 . . .).

Mean number of occurrences ¼ �

s:e: of number of occurrences ¼ �
p

The standard error for the number of occurrences equals the square root of

the mean, which is estimated by the square root of the observed number of events,

d
p

.

Example 22.2

A district health authority which plans to close the smaller of two maternity units

is assessing the extra demand this will place on the remaining unit. One factor

being considered is the risk that on any given day the demand for admissions will
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exceed the unit’s capacity. At present the larger unit averages 4.2 admissions per

day and can cope with a maximum of 10 admissions per day. This results in the

unit’s capacity being exceeded only on about one day per year. After the closure of

the smaller unit the average number of admissions is expected to increase to 6.1

per day. The Poisson distribution can be used to estimate the proportion of days

on which the unit’s capacity is then likely to be exceeded. For this we need to

determine the probability of getting 11 or more admissions on any given day. This

is most easily calculated by working out the probabilities of 0, 1, 2 . . . or 10 admis-

sions and subtracting the total of these from 1, as shown in Table 22.3. For

example:

Probability (three admissions) ¼ e�6:1 6:13

3!

The calculation shows that the probability of 11 or more admissions in a day is

0.0470. The unit’s capacity is therefore likely to be exceeded 4.7% of the time, or

on about 17 days per year.

Table 22.3 The probabilities of the number of admissions made

during a day in a maternity unit, based on a Poisson distribution

with a mean of 6.1 admissions per day.

No. of admissions Probability

0 0.0022

1 0.0137

2 0.0417

3 0.0848

4 0.1294

5 0.1579

6 0.1605

7 0.1399

8 0.1066

9 0.0723

10 0.0440

Total (0� 10) 0.9530

11þ (by subtraction, 1� 0:9530) 0.0470

Shape of the Poisson distribution

Figure 22.3 shows the shape of the Poisson distribution for various values of its

mean, �. The distribution is very skewed for small means, when there is a sizeable

probability that zero events will be observed. It is symmetrical for large means and

is adequately approximated by the normal distribution for values of � ¼ 10 or

more.
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Fig. 22.3 Poisson distribution for various values of �. The horizontal scale in each diagram shows values of

the number of events, d.

Use of the Poisson distribution

The Poisson distribution (and its normal approximation) can be used whenever it

is reasonable to assume that the outcome events are occurring independently of

each other and randomly in time. This assumption is, of course, less likely to be
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true for infectious than for non-communicable diseases but, provided there is no

strong evidence of disease clustering, the use is still justified. Specific techniques

exist to detect disease clustering in time and=or space (see Elliott et al., 2000), such

as the possible clustering of cases of leukaemia or variant Creutzfeldt–Jakob

disease in a particular area. Such clusters violate what might otherwise be a

Poisson distribution.

22.5 STANDARD ERROR OF A RATE

We now discuss the use of the Poisson distribution for the analysis of rates. Recall

that:

Rate, l ¼ number of events

total person-years of observation
¼ d

T

Although the value of the total person-years of observation (T) is affected by the

number of events, and the time at which they occur (since an individual’s period of

observation only contributes until they experience an event, as then they are no

longer at risk), it can be shown that we do not need to explicitly consider this

variation in T. We can therefore calculate the standard error of a rate as

follows:

s:e: (rate) ¼ s:e: (number of events)

T
¼ d

p

T
¼ l

T

r

The right hand version of the formula (derived by replacing d
p

with (lT)
p

)

makes it clear that the standard error of the rate will be smaller the larger the

total person-years of observation, as l will be the same, on average, whatever the

value of this.

Example 22.1 (continued)

We showed earlier that in the 2-year morbidity study in rural Guatemala the rate

of acute lower respiratory infections, expressed per 1000 child-years at risk, was

estimated to be 65.3 per 1000 child-years. The standard error of the rate is:

s:e: ¼ d
p

T
� 1000 ¼ 57

p

873
� 1000 ¼ 8:6
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22.6 CONFIDENCE INTERVAL FOR A RATE

A confidence interval for a rate can be derived from its standard error, in the usual

way. However, it is preferable to work on the log scale and to derive a confidence

interval for the log rate, and then to antilog this to give a confidence interval for a

rate, since this takes account of the constraint that the rate must be greater than or

equal to zero. We now show how to do this.

The formula for the standard error of the log rate is derived using the delta

method (see Box 16.1 on p. 157), and is:

s:e: ( log rate) ¼ 1

d
p

Thus, perhaps surprisingly, the standard error of the log rate depends only on the

number of events, and not on the length of follow-up time. In the same way as

shown in Chapter 16, the steps of calculating the confidence interval on the log

scale and then converting it to give a confidence interval for the rate can be

combined into the following formulae:

95% CI (rate) ¼ rate=EF to rate� EF

Error factor (EF) ¼ exp(1:96= d
p

)

Example 22.1 (continued)

For the Guatemala morbidity study there were 57 lower respiratory infections in

873 child-years at risk. The log rate per 1000 child-years at risk, is log(l) ¼
log(1000� 57=873) ¼ log(65:3) ¼ 4:179. The standard error of this log rate is:

s:e: ( log rate) ¼ 1= d
p ¼ 1= 57

p ¼ 0:132

1 The 95% confidence interval for the log rate is therefore:

95% CI ¼ 4:179� (1:96� 0:132) to 4:179 þ (1:96� 0:132) ¼ 3:919 to 4:438

The 95% confidence interval for the rate is:

95% CI ¼ exp(3:919) to exp(4:438) ¼ 50:36 to 84:65 infections per

1000 child-years

2 Alternatively, we may calculate the 95% CI using the 95% error factor (EF) for

the rate:
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EF ¼ exp(1:96= d
p

) ¼ exp(1:96= 57
p

) ¼ 1:296

The 95% confidence interval for the rate is:

95% CI ¼ l
EF

to l� EF ¼ 65:3=1:296 to 65:3� 1:296

¼ 50:36 to 84:65 infections per 1000 child-years
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23.1 INTRODUCTION

In this chapter we describe the two measures used to compare rates in different

exposure groups: the rate difference and the rate ratio. We then show how to

use Mantel–Haenszel methods to estimate rate ratios controlling for confounding

factors. In Part C we emphasized the similarity between Mantel–Haenszel

methods, which use stratification to estimate odds ratios for the effect of exposure

controlled for the effects of confounding variables, and logistic regression

models. Mantel–Haenszel methods for rate ratios are closely related to the corres-

ponding regression model for rates, Poisson regression, which is introduced in

Chapter 24.

23.2 COMPARING TWO RATES

We now see how the rates of disease in two exposure groups may be compared,

using two different measures: the rate difference and the rate ratio.

Rate differences

Example 23.1

The children in the Guatemala morbidity study analysed in Example 22.1 were

subdivided according to the quality of their housing conditions. The data are

shown in Table 23.1, together with the notation we will use. We will consider

children living in poor housing conditions to be the exposed group and, as in Part

C, denote exposed and unexposed groups by the subscripts 1 and 0 respectively.

The rate difference comparing poor with good housing is 93:0� 46:3 ¼ 46:7

infections per 1000 child-years.
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Table 23.1 Incidence of lower respiratory infection among children aged less than 5 years, according to

their housing conditions.

Housing condition

Number of acute lower

respiratory infections Child-years at risk Rate=1000 child-years

Poor (exposed) d1 ¼ 33 T1 ¼ 355 l1 ¼ 93:0

Good (unexposed) d0 ¼ 24 T0 ¼ 518 l0 ¼ 46:3

Total d ¼ 57 T ¼ 873 l ¼ 65:3

The standard error of a rate difference is:

s:e: (rate difference) ¼ d1

T2
1

þ d0

T2
0

� �s

This canbeused in theusualway toderivea95%confidence interval. In this example,

s:e: ¼ d1

T2
1

þ d0

T2
0

 !s
¼ 33

3552
þ 24

5182

� �r
� 1000

¼ 18:7 infections per 1000 child-years

and the 95% confidence interval is:

46:7� 1:96�18:7 to 46:7þ 1:96�18:7

¼ 10:0 to 83:4 infections per 1000 child-years

With 95% confidence, the rate of lower respiratory infections among children

living in poor housing exceeds the rate among children living in good housing by

between 10.0 and 83.4 infections per 1000 child-years.

Rate ratios

As explained in more detail in the next chapter, the analysis of rates is usually

done using rate ratios rather than rate differences. The rate ratio is defined as:

Rate ratio ¼ rate in exposed

rate in unexposed
¼ l1

l0
¼ d1=T1

d0=T0

¼ d1 � T0

d0 � T1

As for risk ratios and odds ratios, we use the standard error of the log rate ratio to

derive confidence intervals, and tests of the null hypothesis of no difference
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between the rates in the two groups. This (again derived using the delta method) is

given by:

s:e: of log(rate ratio) ¼ 1=d1 þ 1=d0ð Þp

The 95% confidence interval for the rate ratio is:

95% CI ¼ rate ratio=EF to rate ratio� EF, where

EF ¼ exp[1:96� s:e: of log(rate ratio)]

z-test for the rate ratio

A z-test (Wald test, see Chapter 28) of the null hypothesis that the rates in the two

groups are equal is given by:

z ¼ log(rate ratio)

s:e: of log(rate ratio)

Example 23.1 (continued)

The rate ratio comparing children living in poor housing with those living in good

housing is:

rate ratio ¼ 33=355

24=518
¼ 2:01

The standard error of the log(rate ratio) is 1=33þ 1=24ð Þp ¼ 0:268, and the 95%

error factor is:

95% EF ¼ exp(1:96� 0:268) ¼ 1:69

A 95% confidence interval for the rate ratio is thus:

95% CI ¼ 2:01=1:69 to 2:01� 1:69 ¼ 1:19 to 3:39
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With 95% confidence, the rate of acute lower respiratory infections among

children living in poor housing is between 1.19 and 3.39 times the rate among

children living in good housing. The z statistic is log(2.01)/0.268 ¼ 2.60; the

corresponding P value is 0.009. There is therefore good evidence against the null

hypothesis that infection rates are the same among children living in good and

poor quality housing.

Relationship between rate ratio, risk ratio and odds ratio

From Chapter 16, we know that for a rare event the risk ratio is approximately

equal to the odds ratio. And in the last chapter we saw that for a rare event, risk up

to time t approximately equals lt. It therefore follows that for a rare event the risk
ratio and rate ratio are also approximately equal:

Risk ratio � l1t
l0t

¼ l1
l0

¼ Rate ratio � Odds ratio

However when the event is not rare the three measures will all be different. These

different measures of the association between exposure and outcome event, and of

the impact of exposure, are discussed in more detail in Chapter 37.

23.3 MANTEL–HAENSZEL METHODS FOR RATE RATIOS

Recall from Chapter 18 that a confounding variable is one that is related both to

the outcome variable and to the exposure of interest (see Figure 18.1), and that is

not a part of the causal pathway between them. Ignoring the effects of confound-

ing variables may lead to bias in our estimate of the exposure–outcome associ-

ation. We saw that we may allow for confounding in the analysis via stratification:

restricting estimation of the exposure–outcome association to individuals with the

same value of the confounder. We then used Mantel–Haenszel methods to com-

bine the stratum-specific estimates, leading to an estimate of the summary odds

ratio, controlled for the confounding.

We now present Mantel–Haenszel methods for rate ratios. Table 23.2 shows the

notation we will use for the number of events and person-years in each group, in

stratum i. The notation is exactly the same as that in Table 23.1, but with the

subscript i added, to refer to the stratum i.

Table 23.2 Notation for the table for stratum i.

Number of events Person-years at risk

Group 1 (Exposed) d1i T1i
Group 0 (Unexposed) d0i T0i
Total di ¼ d0i þ d1i Ti ¼ T0i þ T1i
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The data consist of c such tables, where c is the number of different values the

confounding variable can take. The estimate of the rate ratio for stratum i is

RRi ¼ d1i=T1i

d0i=T0i

¼ d1i � T0i

d0i � T1i

Mantel–Haenszel estimate of the rate ratio controlled for confounding

As for the odds ratio, the Mantel–Haenszel estimate of the rate ratio is a weighted

average (see Section 18.3) of the rate ratios in each stratum. The weight for each

rate ratio is:

wi ¼ d0i � T1i

Ti

Since the numerator of the weight is the same as the denominator of the rate ratio

in stratum i, wi � RRi ¼ (d1i � T0i)=Ti. These weights therefore lead to the

following formula for the Mantel–Haenszel estimate of the rate ratio:

RRMH ¼ �(wi � RRi)

�wi

¼

X d1i � T0i

TiX d0i � T1i

Ti

Following the notation of Clayton and Hills (1993), this can alternatively be

written as:

RRMH ¼ Q=R, where

Q ¼
X d1i � T0i

Ti

and R ¼
X d0i � T1i

Ti

Example 23.2

Data on incidence of acute lower respiratory infections from a study in Guatemala

were presented in Example 23.1 and Table 23.1. The rate ratio comparing children

living in poor with good housing conditions is 2.01 (95% CI 1.19 to 3.39). Table

23.3 shows the same information, stratified additionally by the type of cooking

stove used in the household.
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Table 23.3 Association between incidence of acute lower respiratory infection and housing conditions, stratified

by type of cooking stove.

(a) Wood burning stove (stratum 1)

Housing condition Number of infections Child-years at risk Rate=1000 child-years

Poor (exposed) d11 ¼ 28 T11 ¼ 251 l11 ¼ 111:6

Good (unexposed) d01 ¼ 5 T01 ¼ 52 l01 ¼ 96:2

Total d1 ¼ 33 T1 ¼ 303 l1 ¼ 108:9

Rate ratio ¼ 1:16 (95% CI 0.45 to 3.00), P ¼ 0:76

(b) Kerosene or gas stove (stratum 2)

Housing condition Number of infections Child-years at risk Rate=1000 child-years

Poor (exposed) d12 ¼ 5 T12 ¼ 104 l12 ¼ 48:1

Good (unexposed) d02 ¼ 19 T02 ¼ 466 l02 ¼ 40:8

Overall d2 ¼ 24 T2 ¼ 570 l2 ¼ 42:1

Rate ratio ¼ 1:18 (95% CI 0.44 to 3.16), P ¼ 0:74

Table 23.4 Person-years of observation according to housing conditions

and type of cooking stove.

Type of stove

Housing condition Wood burning stove Gas or kerosene stove

Poor (exposed) T11 ¼ 251 T21 ¼ 104

Good (unexposed) T10 ¼ 52 T20 ¼ 466

Examination of the association between quality of housing and infection rates

in the two strata defined by type of cooking stove shows that there is little evidence

of an association in either stratum. Type of cooking stove is a strong confounder

of the relationship between housing quality and infection rates, because most poor

quality houses have wood burning stoves while most good quality houses have

kerosene or gas stoves. This can be seen by tabulating the person-years of obser-

vation according to housing condition and cooking stove, as shown in Table 23.4.

Table 23.5 shows the calculations needed to derive the Mantel–Haenszel rate

ratio combining the stratified data, presented in Table 23.3, on the association

between housing conditions (the exposure variable) and the incidence of acute

lower respiratory infection (the outcome), controlling for type of stove.

The Mantel–Haenszel estimate of the rate ratio equals:

RRMH ¼ Q=R ¼ 8:89=7:61 ¼ 1:17
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Table 23.5 Calculations required to derive the Mantel–Haenszel summary rate ratio, with associated confidence

interval and P value.

Stratum i RRi wi ¼ d0i�T1i
Ti

wi � RRi Vi d1i E1i

Wood stove (i ¼ 1) 1.16 4.14 4.81 4.69 28 27.34

Kerosene=gas (i ¼ 2) 1.18 3.47 4.09 3.58 5 4.38

Total R ¼ 7:61 Q ¼ 8:89 V ¼ 8:27 O ¼ 33 E ¼ 31:72

After controlling for the confounding effect of type of stove, the rate of infection is

only slightly (17%) greater among children living in poor housing conditions

compared to children living in good housing conditions.

Standard error and confidence interval for the Mantel–Haenszel RR

As is usual for ratio measures, the 95% confidence interval for RRMH is derived

using the standard error of log(RRMH), denoted by s:e:MH.

95% CI ¼ RRMH=EF to RRMH � EF, where

the error factor EF ¼ exp(1:96� s:e:MH)

The simplest formula for the standard error of logRRMH (Clayton and Hills 1993)

is:

s:e:MH ¼ V

Q� R

� �r
, where

V ¼ �Vi, and Vi ¼ di � T1i � T0i

T2
i

V is the sum across the strata of the variances Vi for the number of exposed

individuals experiencing the outcome event, i.e. the variances of the d1i’s. Note

that the formula for the variance Vi of d1i for stratum i gives the same value

regardless of which group is considered as exposed and which is considered as

unexposed.

Example 23.2 (continued)

Using the results of the calculations for Q, R and V shown in Table 23.5, we find

that:
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s:e:MH ¼ V

Q� R

� �r
¼ 8:27

8:89� 7:61

� �
¼ 0:35

r

so that EF ¼ exp(1:96� 0:35) ¼ 1:98, RRMH=EF ¼ 1:17=1:98 ¼ 0:59, and

RRMH � EF ¼ 1:17� 1:98 ¼ 2:32. The 95% confidence interval is therefore:

95% CI for RRMH ¼ 0:59 to 2:32

Mantel–Haenszel x2 test of the null hypothesis

Finally, we test the null hypothesis that RRMH ¼ 1 by calculating the Mantel–

Haenszel x2 test statistic:

x2MH ¼ (�d1i � �E1i)
2

�Vi

¼ (O� E)2

V
¼ U2

V
; d:f : ¼ 1

This is based on a comparison in each stratum of the number of exposed individ-

uals observed to have experienced the disease event (d1i) with the expected number

in this category (E1i) if there were no difference in the rates between the exposed

and unexposed. The expected numbers are calculated in the same way as for the

standard �2 test described in Chapter 17.

E1i ¼ di � T1i

Ti

The formula has been simplified by writing O for the sum of the observed

numbers, E for the sum of the expected numbers and U for the difference between

them:

O ¼ �d1i, E ¼ �E1i and U ¼ D� E

Note that �2
MH has just 1 degree of freedom irrespective of how many strata are

summarized.

Example 23.2 (continued)

From the data presented in Table 23.5, a total of O ¼ 33 children living in poor

housing experienced acute lower respiratory infections, compared with an
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expected number of 31.72, based on assuming no difference in rates between poor

and good housing. Thus the Mantel–Haenszel �2 statistic is:

�2
MH ¼ U2

V
¼ (33� 31:72)2

8:27
¼ 0:20 (1 d:f :, P ¼ 0:655)

After controlling for type of cooking stove, there is no evidence of an association

between quality of housing and incidence of lower respiratory infections.

Test for effect modification (interaction)

Use of Mantel–Haenszel methods to control for confounding assumes that the

exposure–outcome association is the same in each of the strata defined by the levels

of the confounder, in other words that the confounder does not modify the effect

of the exposure on the outcome event. If this is true, RRi ¼ RRMH, and it follows

that:

(d1i � T0i �RRMH � d0i � T1i) ¼ 0

The x2 test for heterogeneity is based on a weighted sum of the squares of these

differences:

�2 ¼ �
(d1i � T0i �RRMH � d0i � T1i)

2

RRMH � Vi � T2
i

, d:f : ¼ c� 1

where Vi is as defined above, and c is the number of strata. The greater the

differences between the stratum-specific rate ratios and RRMH, the larger will be

the heterogeneity statistic.

Example 23.2 (continued)

The rate ratios in the two strata were very similar (1.16 in houses with wood-

burning stoves and 1.18 in houses with kerosene or gas stoves). We do not,

therefore, expect to find evidence of effect modification. Application of the

formula for the test for heterogeneity gives �2 ¼ 0:0005 (1 d:f :), P ¼ 0:98. There

is thus no evidence that type of cooking stove modifies the association between

quality of housing and rates of respiratory infections.
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24.1 INTRODUCTION

In this chapter we introduce Poisson regression for the analysis of rates. This is

used to estimate rate ratios comparing different exposure groups in the same way

that logistic regression is used to estimate odds ratios comparing different exposure

groups. We will show how it can be used to:

� compare the rates between two exposure (or treatment) groups

� compare more than two exposure groups

� examine the effect of an ordered or continuous exposure variable

� control for the confounding effects of one or more variables

� estimate and control for the effects of exposures that change over time

We will see that Poisson regression models comparing two exposure groups give

identical rate ratios, confidence intervals and P-values to those derived using the

methods described in Section 23.2. We will also see that Poisson regression to

control for confounding is closely related to the Mantel–Haenszel methods for

rate ratios, described in Section 23.3. Finally, we will show how to estimate and

control for the effects of variables that change over time, by splitting the follow-up

time for each subject.

Like logistic regression models, Poisson regression models are fitted on a log

scale. The results are then antilogged to give rate ratios and confidence intervals.

Since the principles and the approach are exactly the same as those outlined for

logistic regression in Part C, a more concise treatment will be given here; readers

are referred to Chapters 19 and 20 for more detail. More general issues in

regression modelling are discussed in Chapter 29.
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24.2 POISSON REGRESSION FOR COMPARING TWO EXPOSURE

GROUPS

Introducing the Poisson regression model

The exposure rate ratio is defined as:

Exposure rate ratio ¼ rate in exposed group

rate in unexposed group

If we re-express this as:

Rate in exposed group ¼ Rate in unexposed group� Exposure rate ratio

then we have the basis for a model which expresses the rate in each group in terms

of two model parameters. These are:

1 The baseline rate. As in Chapters 19 and 20, we use the term baseline to refer to

the exposure group against which all the other groups are compared. When

there are just two exposure groups, then the baseline rate is the rate in the

unexposed group. We use the parameter name Baseline to refer to the rate in

the baseline group.

2 The exposure rate ratio. This expresses the effect of the exposure on the rate of

disease. We use the parameter name Exposure to refer to the exposure rate

ratio.

As with logistic regression, Poisson regression models are fitted on a log scale. The

two equations that define this model for the rate of an outcome event are shown in

Table 24.1, together with the corresponding equations for the log rate. The

equations for the rate can be abbreviated to:

Rate ¼ Baseline� Exposure

The two equations that define the Poisson regression model on the log scale can be

written:

log(Rate) ¼ log(Baseline)þ log(Exposure rate ratio)

Table 24.1 Equations defining the Poisson regression model for the comparison of two exposure groups.

Exposure group Rate Log rate

Exposed ( group 1) Baseline rate� exposure rate ratio Log(baseline rate)þ log(exposure rate ratio)

Unexposed ( group 0) Baseline rate Log(baseline rate)
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In practice, we abbreviate it to:

log(Rate) ¼ Baselineþ Exposure

since it is clear from the context that output on the log scale refers to log rate and

log rate ratios. Note that whereas the exposure effect on the rate ratio scale is

multiplicative, the exposure effect on the log scale is additive.

Example 24.1

All the examples in this chapter are based on a sample of 1786 men who took part

in the Caerphilly study, a study of risk factors for cardiovascular disease. Partici-

pants were aged between 43 and 61 when they were first examined, and were

followed for up to 19 years. The first examinations took place between July 1979

and October 1983, and the follow-up for the outcome (myocardial infarction or

death from heart disease) ended in February 1999. Further information about the

study can be found at www.epi.bris.ac.uk/mrc-caerphilly.

The first ten lines of the dataset are shown in Table 24.2. Variable ‘cursmoke’,

short for current smoker at recruitment, was coded as 1 for subjects who were

smokers and 0 for subjects who were non-smokers, and variable ‘MI’ was coded

as 1 for subjects who experienced a myocardial infarction or died from heart

disease during the follow-up period and 0 for subjects who did not. Variable

‘years’ is the years of follow-up for each subject (the time from examdate to

exitdate); it was derived using a statistical computer package, as described in

Section 22.2.

There were 990 men who were current smokers at the time they were recruited

into the study, and 796 men who had never smoked or who were ex-smokers.

Table 24.3 shows rates of myocardial infarction in these two groups. The rate ratio

comparing smokers with never=ex-smokers is 16:98=9:68 ¼ 1:700.

Table 24.2 First ten lines of the computer dataset from the Caerphilly study. Analyses of the Caerphilly study

are by kind permission of the MRC Steering Committee for the Management of MRC Epidemiological Resources

from the MRC Epidemiology Unit (South Wales).

id dob examdate exitdate years MI cursmoke

1 20=May=1929 17=Jun=1982 31=Dec=1998 16.54 0 1

2 9=Jul=1930 10=Jan=1983 24=Dec=1998 15.95 0 0

3 6=Feb=1929 23=Dec=1982 26=Nov=1998 15.93 0 1

4 24=May=1931 7=Jul=1983 22=Nov=1984 1.38 1 0

5 9=Feb=1934 3=Sep=1980 19=Dec=1998 18.29 0 0

6 14=Mar=1930 17=Nov=1981 31=Dec=1998 17.12 0 0

7 13=May=1933 30=Oct=1980 27=Dec=1998 18.16 0 1

8 23=May=1924 24=Apr=1980 24=Jan=1986 5.75 1 1

9 20=Jun=1931 11=Jun=1980 12=Dec=1998 18.50 0 1

10 12=May=1929 17=Nov=1979 20=Jan=1995 15.18 1 0
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Table 24.3 Rates of myocardial infarction among men who were and were not current smokers at the time

they were recruited to the Caerphilly study.

Current smoker at

entry to the study

Number of myocardial

infarctions Person-years at risk Rate per 1000 person-years

Yes (exposed) d1 ¼ 230 T1 ¼ 13 978 l1 ¼ 230=13:978 ¼ 16:98

No (unexposed) d0 ¼ 118 T0 ¼ 12 183 l0 ¼ 118=12:183 ¼ 9:68

Overall d ¼ 348 T ¼ 26 161 l ¼ 348=26:161 ¼ 13:30

We will now show how to use Poisson regression to examine the association

between smoking and rates of myocardial infarction in these data. To use a

computer package to fit a Poisson regression model, it is necessary to specify

three items:

1 The name of the outcome variable, which in this case is MI. If each line of the

dataset represents an individual (as is the case here) then the outcome variable is

coded as 1 for individuals who experienced the event and 0 for individuals who

did not experience the event. If data have been grouped according to the values of

different exposure variables then the outcome contains the total number of

events in each group.

2 The total exposure time, for the individual or the group (depending on whether

each line in the dataset represents an individual or a group). As will be explained

in Section 24.3, this is used as an offset in the Poisson regression model.

3 The name of the exposure variable(s). In this example, we have just one exposure

variable, which is called cursmoke. The required convention for coding is that

used throughout this book; thus cursmoke was coded as 0 for men who were

never=ex-smokers at the start of the study (the unexposed or baseline group) and

1 for men who were current smokers at the start of the study (the exposed

group).

The Poisson regression model that will be fitted is:

Rate of myocardial infarction ¼ Baseline� Cursmoke

Its two parameters are:

1 Baseline: the rate of myocardial infarction in the baseline group (never=ex-

smokers), and

2 Cursmoke: the rate ratio comparing current smokers with never=ex-smokers.

Output on the ratio scale

Table 24.4 shows the computer output obtained from fitting this model. The two

rows in the output correspond to the two parameters of the logistic regression

model; cursmoke is our exposure of interest and the constant term refers to the

252 Chapter 24: Poisson regression



Table 24.4 Poisson regression output for the model relating rates of myocardial infarction with smoking at

the time of recruitment to the Caerphilly study.

Rate ratio z P > jzj 95% CI

Cursmoke 1.700 4.680 0.000 1.361 to 2.121

Constant 0.00969 �50:37 0.000 0.00809 to 0.0116

baseline group. The same format is used for both parameters, and is based on

what makes sense for interpretation of the effect of exposure. This means that

some of the information presented for the constant (baseline) parameter is not of

interest.

The column labelled ‘Rate Ratio’ contains the parameter estimates:

1 For the first row, labelled ‘cursmoke’, this is the rate ratio (1.700) comparing

smokers at recruitment with never=ex-smokers. This is identical to the rate ratio

that was calculated directly from the raw data (see Table 24.3).

2 For the second row, labelled ‘constant’, this is the rate of myocardial

infarction in the baseline group (0:00969 ¼ 118=12 183, see Table 24.3). As we

explained in the context of logistic regression, this apparently inconsistent

labelling is because output from regression models is labelled in a uniform

way.

The remaining columns present z statistics, P-values and 95% confidence intervals

corresponding to the model parameters. They will be explained in more detail after

the explanation of Table 24.5 below.

Output on the log scale

Table 24.5 shows Poisson regression output, on the log scale, for the association

between smoking and rates of myocardial infarction. The model is:

Log(Rate) ¼ Baselineþ Cursmoke

where

� Baseline is the log rate of myocardial infarction in never=ex-smokers, and

� Cursmoke is the log rate ratio comparing the rate of myocardial infarction in

smokers with that in never=ex-smokers.

Table 24.5 Poisson regression output (log scale) for the association between smoking and

rates of myocardial infarction.

Coefficient s.e. z P > jzj 95% CI

Cursmoke 0.530 0.113 4.680 0.000 0.308 to 0.752

Constant �4:64 0.092 �50:37 0.000 �4:82 to �4:45
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The interpretation of this output is very similar to that described for logistic

regression in Chapter 19; readers are referred there for a more detailed discussion

of all components of the output.

1 The first column gives the results for the regression coefficients (corresponding

to the parameter estimates on a log scale). For the row labelled ‘cursmoke’ this

is the log rate ratio comparing smokers with non-smokers. It agrees with what

would be obtained if it were calculated directly from Table 24.3:

log rate ratio ¼ log(16:98=9:68) ¼ log(1:70) ¼ 0:530

1 For the row labelled ‘constant’, the regression coefficient is the log rate in the

baseline group, i.e. the log rate of myocardial infarction among non-smokers:

log rate ¼ log(118=12 183) ¼ log(0:00969) ¼ �4:637

2 The second column gives the standard errors of the regression coefficients. For a

binary exposure variable, these are exactly the same as those derived using the

formulae given in Section 23.2. Thus:

s:e:( log rate ratio) ¼ 1=d1 þ 1=d0ð Þp ¼ 1=118þ 1=230ð Þp ¼ 0:113

s:e:( log rate in never=ex-smokers) ¼ 1=d0ð Þp ¼ 1=118ð Þp ¼ 0:092

3 The 95% confidence intervals for the regression coefficients in the last column

are derived in the usual way. For the log rate ratio comparing smokers with

never=ex-smokers, the 95% CI is:

95% CI ¼ (0:530 � (1:96� 0:113)) to (0:530þ (1:96� 0:113))

¼ 0:308 to 0:752

4 Each z statistic in the third column is the regression coefficient divided by its

standard error. They can be used to derive a Wald test of the null hypothesis

that the corresponding regression coefficient ¼ 0.

5 The P-values in the fourth column are derived from the z statistics in the usual

manner (see Table A1 in the Appendix) and can be used to test the null

hypothesis that the true (population) value for the corresponding population

parameter is zero. For example the P-value of 0.000 (i.e. < 0:001) for the log

rate ratio comparing smokers with never=ex-smokers indicates that there is

strong evidence against the null hypothesis that rates of myocardial infarction

are the same in smokers as in non-smokers.

As previously explained in the context of logistic regression, we are usually

not interested in the z statistic and corresponding P-value for the constant

parameter.
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Relation between outputs on the ratio and log scales

As with logistic regression, the results in Table 24.4 (output on the original, or

ratio, scale) are derived from the results in Table 24.5 (output on the log scale).

Once the derivation of the ratio scale output is understood, it is rarely necessary to

refer to the log scale output: the most useful results are the rate ratios, confidence

intervals and P-values displayed on the ratio scale, as in Table 24.4. Note that the

output corresponding to the constant term (baseline group) is often omitted from

computer output, since the focus of interest is on the parameter estimates (rate

ratios) comparing the different groups.

1 In Table 24.4, the column labelled ‘Rate Ratio’ contains the exponentials

(antilogs) of the Poisson regression coefficients shown in Table 24.5. Thus the

rate ratio comparing smokers with never=ex-smokers¼ exp(0.530)¼ 1.700.

2 The z statistics and P-values are derived from the regression coefficients and

their standard errors, and so are identical in the two tables.

3 The 95% confidence intervals in Table 24.4 are derived by antilogging

(exponentiating) the confidence intervals on the log scale presented in Table

24.5. Thus the 95% CI for the rate ratio comparing smokers with never=ex-

smokers is:

95% CI ¼ exp(0:308) to exp(0:752) ¼ 1:361 to 2:121

This is identical to the 95% CI calculated using the methods described in Section

23.2.

95% CI for rate ratio ¼ rate ratio=EF to rate ratio� EF

where the error factor EF ¼ exp(1:96� s:e: ( log rate ratio)). Note that since the

calculations are multiplicative:

Rate ratio

Lower confidence limit
¼ Upper confidence limit

Rate ratio

This can be a useful check on confidence limits presented in tables in published

papers.

24.3 GENERAL FORM OF THE POISSON REGRESSION MODEL

The general form of the Poisson regression model is similar to that for logistic

regression (Section 19.3) and that for multiple regression (Section 11.4). It relates

the log rate to the values of one or more exposure variables:

log(rate) ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp
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The quantity on the right hand side of the equation is known as the linear predictor

of the log rate, given the particular value of the p exposure variables x1 to xp. The

�’s are the regression coefficients associated with the p exposure variables.

Since log(rate) ¼ log(d=T) ¼ log(d) � log(T), the general form of the Poisson

regression model can also be expressed as:

log(d) ¼ log(T)þ �0 þ �1x1 þ �2x2 þ . . .þ �pxp

The term log(T) is known as an offset in the regression model. To use statistical

packages to fit Poisson regression models we must specify the outcome as the

number of events and give the exposure time T, which is then included in the offset

term, log(T).

We now show how this general form corresponds to the model we used in

Section 24.2 for comparing two exposure groups. The general form for comparing

two groups is:

Log rate ¼ �0 þ �1x1

where x1 (the exposure variable) equals 1 for those in the exposed group and 0 for

those in the unexposed (baseline) group.

Using a similar argument to that given in Section 19.3 in the context of logistic

regression models, it is straightforward to show that:

1 �0 (the intercept) corresponds to the log rate in the unexposed (baseline) group,

and

2 �1 corresponds to the log of the rate ratio comparing exposed and unexposed

groups (the exposure rate ratio).

The equivalent model on the ratio scale is:

Rate of disease ¼ exp(�0)� exp(�1x1)

In this multiplicative model exp(�0) corresponds to the rate of disease in the

baseline group, and exp(�1) to the exposure rate ratio.

24.4 POISSON REGRESSION FOR CATEGORICAL AND CONTINUOUS

EXPOSURE VARIABLES

We now consider Poisson regression models for categorical exposure variables

with more than two levels, and for ordered or continuous exposure variables. The

principles have already been outlined in detail in Chapter 19, in the context of

logistic regression. The application to Poisson regression will be illustrated by
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examining the association between social class and rates of myocardial infarction

in the Caerphilly study.

Poisson regression to compare more than two exposure groups

To examine the effect of categorical exposure variables in Poisson and other regres-

sion models, we look at the effect of each level compared to a baseline group. This is

done using indicator variables, which are created automatically by most statistical

packages, as explained in more detail in Box 19.1 on page 200.

Example 24.2

In the Caerphilly study, a Poisson regression model was fitted to investigate the

evidence that rates of myocardial infarction were higher among men in less

privileged social classes. Table 24.6 shows the output, with the social class vari-

able, socclass, coded from 1¼ social class I (most affluent) to 6¼ social class V

(most deprived). The model was fitted with social class group III non-manual as

the baseline group, since this was the largest group in the study, comprising 925

(51.8%) of the men. The regression confirms that there is a pattern of increasing

rates of myocardial infarction in more deprived social classes. This trend is

investigated further in Table 24.7 below.

Note that some statistical computer packages will allow the user to specify

which exposure group is to be treated as the baseline group. In other packages,

it may be necessary to recode the values of the variable so that the group chosen to

be the baseline group has the lowest coded value.

Table 24.6 Poisson regression output for the effect of social class on the rate of myocardial infarction. The model

has six parameters: the rate in the baseline group (rate not shown in the table) and the five rate ratios comparing

the other groups with this one. It can be written in abbreviated form as: Rate ¼ Baseline� Socclass.

Rate ratio z P > jzj 95% CI

Socclass(1), I 0.403 �2.36 0.018 0.190 to 0.857

Socclass(2), II 0.759 �1.75 0.080 0.557 to 1.034

Socclass(3), III non-manual 1 (baseline group)

Socclass(4), III manual 0.956 �0.25 0.802 0.675 to 1.355

Socclass(5), IV 0.965 �0.21 0.836 0.693 to 1.344

Socclass(6), V 1.316 1.14 0.253 0.821 to 2.109

Poisson regression for ordered and continuous exposure variables

Example 24.2 (continued)

To investigate further the tendency for increasing rates of myocardial infarction

with increasing deprivation, we can perform a test for trend by fitting a Poisson

regression model for the linear effect of social class. This will assume a constant
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Table 24.7 Poisson regression output for the model for the linear effect of social class on rates of myocardial

infarction: Rate¼ Baseline� [Socclass], where [Socclass] is the rate ratio per unit increase in social class.

Rate ratio z P > jzj 95% CI

Socclass 1.117 2.411 0.016 1.021 to 1.223

increase in the log rate ratio for each unit increase in social class, and correspond-

ingly a constant rate ratio per increase in social class. The results are shown in

Table 24.7. The estimated rate ratio per unit increase in social class is 1.117 (95%

CI 1.021 to 1.223, P ¼ 0:016). There is some evidence of an association between

increasing social deprivation and increasing rates of myocardial infarction.

24.5 POISSON REGRESSION: CONTROLLING FOR CONFOUNDING

Readers are referred to Chapter 20 for a detailed discussion of how regression

models control for confounding in a manner that is analogous to the stratification

procedure used in Mantel–Haenszel methods. Both methods assume that the true

exposure effect comparing exposed with unexposed individuals is the same in each

of the strata defined by the levels of the confounding variable.

Example 24.3

In Section 24.4 we found evidence that rates of myocardial infarction in the

Caerphilly study increased with increasing social deprivation. There was also a

clear association (not shown here) between social class and the prevalence of

smoking at the time of recruitment, with higher smoking rates among men of

less privileged social classes. It is therefore possible that social class confounds the

association between smoking and rates of myocardial infarction. We will examine

this using both Mantel–Haenszel and Poisson regression analyses to estimate the

rate ratio for smoking after controlling for social class. We will then compare the

results.

Table 24.8 shows the rate ratios for smokers compared to non-smokers in strata

defined by social class, together with the Mantel–Haenszel estimate of the rate

ratio for smoking controlling for social class. This equals 1.65 (95% CI 1.32 to

2.06), only slightly less than the crude rate ratio of 1.70 (see Table 24.4). It appears

therefore that social class is not an important confounder of the association

between smoking and rates of myocardial infarction.

Table 24.9 shows the output (on the rate ratio scale) from the correspond-

ing Poisson regression. This model assumes that the rate ratio for smoking is the

same regardless of social class, and (correspondingly) that the rate ratios for social

class are the same regardless of smoking. The estimated rate ratio for smoking

controlled for social class is 1.645, almost identical to the Mantel–Haenszel

estimate (see Table 24.8). There is also little difference between the crude

effect of social class (Table 24.6) and the effect of social class controlling for

smoking.
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Table 24.8 Rate ratios for the association of smoking with rates of myocardial infarction in the Caerphilly

study, separately in social class strata, together with the Mantel–Haenszel estimate of the rate ratio for

smoking controlling for social class.

Social class stratum

Rate ratio (95% CI) for smokers

compared to non-smokers

I (most affluent) 2.07 (0.46 to 9.23)

II 1.49 (0.86 to 2.58)

III non-manual 1.68 (1.23 to 2.30)

III manual 1.38 (0.73 to 2.62)

IV 1.75 (0.91 to 3.35)

V (least affluent) 2.15 (0.77 to 5.96)

Mantel–Haenszel estimate of the rate ratio for smokers

compared to non-smokers, controlling for social class

1.65 (1.32 to 2.06)

x2 for heterogeneity of rate ratios¼ 0:82 (d:f: ¼ 5, P ¼ 0:98)

Table 24.9 Poisson regression output for the model including both current

smoking and social class. The model can be written in abbreviated form as

Rate¼ Baseline � Cursmoke� Socclass, where the baseline group are non-

smokers in Socclass (3).

Rate ratio z P > jzj 95% CI

Cursmoke 1.645 4.351 0.000 1.315 to 2.058

Socclass(1) 0.445 �2.103 0.035 0.209 to 0.946

Socclass(2) 0.830 �1.176 0.240 0.608 to 1.133

Socclass(4) 1.014 0.075 0.940 0.715 to 1.437

Socclass(5) 0.976 �0.142 0.887 0.701 to 1.359

Socclass(6) 1.333 1.194 0.232 0.832 to 2.136

Note the different forms of the output for the Mantel–Haenszel and Poisson

regression approaches. The Mantel–Haenszel output shows us stratum-specific

effects of the exposure variable, which draws our attention to differences between

strata and reminds us that when we control for smoking we assume that the effect

of smoking is the same in different social classes. The Poisson regression output

shows us the effect of smoking controlled for social class, and the effect of social

class controlled for smoking. However, we should be aware of the need to test the

underlying assumption that the effect of each variable is the same regardless of the

value of the other: that is that there is no effect modification, also known as

interaction. For Mantel–Haenszel methods this was described in Section 23.3.

We see how to examine interaction in regression models in Chapter 29.

24.6 SPLITTING FOLLOW-UP TO ALLOW FOR VARIABLES WHICH

CHANGE OVER TIME

In any long-term study the values of one or more of the exposure variables may

change over time. The most important such change is in the age of subjects in the
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study. Since rates of most disease outcomes are strongly associated with age, we

will usually wish to control for age in our analysis.

To allow for changes in age, or for any exposure variable whose value changes

during the study, we simply divide the follow-up time for each person into distinct

periods, during which the variable does not change. Since age, of course, changes

constantly we divide the follow-up time into age groups. For example, in the

Caerphilly study we might use five-year age groups: 40–44, 45–49, 50–54 and so

on. Note that age 50–54 means ‘from the date of the 50th birthday to the day

before the 55th birthday’. The underlying assumption is that rates do not differ

much within an age group, so that for example it assumes that the rate of

myocardial infarction will be similar for a 54-year-old and a 50-year-old.

Narrower age bands will be appropriate when rates vary rapidly with age; for

example in a study of infant mortality.

Table 24.10 and Figure 24.1 illustrate the division of the follow-up period into

5-year age bands for subject numbers 1 and 2 in the Caerphilly dataset. Subject 1

was aged 58.52 years when he was recruited, and therefore started in the 55–59 age

group. He passed through the 60–64, 65–69 and 70–74 age groups, and was in the

75–79 age group at the end of the study (at which time he was aged 75.36).

Subject 2 was also in the 55–59 age group when he was recruited. He was in the

60–64 age group when he experienced a myocardial infarction on 27 Feb 1985, at

which time he was aged 61.81.

It is important to note that the value of MI (myocardial infarction, the outcome

variable) is equal to 0 for every interval unless the subject experienced an MI at the

end of the interval, in which case it is 1. Thus for subject 1, the value of MI is 0 for

every interval, and for subject 2 it is 0 for the first interval and 1 for the second

interval. In general, the value of the outcome variable for a subject who experi-

enced the outcome will be zero for every interval except the last.

Having divided the follow-up time in this way, we may now use Mantel–

Haenszel or Poisson regression methods to examine the way in which disease

rates change with age group, or to examine the effects of other exposures having

Table 24.10 Follow-up time split into 5-year age bands for the first two subjects in the Caerphilly study.

Date at start of

interval

Date at end

of interval Age group

Age at start

of interval

Age at end

of interval

Years in

interval MI

Subject 1, born 22 Aug 1923, recruited 1 Mar 1982, exit (at end of follow-up) 31 Dec 1998

1 Mar 1982 21 Aug 1983 55–59 58.52 60 1.48 0

22 Aug 1983 21 Aug 1988 60–64 60 65 5 0

22 Aug 1988 21 Aug 1993 65–69 65 70 5 0

22 Aug 1993 21 Aug 1998 70–74 70 75 5 0

22 Aug 1998 31 Dec 1998 75–79 75 75.36 0.36 0

Subject 2, born 8 May 1923, recruited 30 May 1982, exit (on date of MI) 27 Feb 1985

30 May 1982 7 May 1983 55–59 59.06 60 0.94 0

8 May 1983 27 Feb 1985 60–64 60 61.81 1.81 1
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Fig. 24.1 Age of subjects 1 and 2 during the Caerphilly study. The dotted vertical lines denote 5-year age

bands.

controlled for the effects of age group. Perhaps surprisingly, we analyse the

contributions from the different time periods from the same individual in exactly

the same way as if they were from different individuals. See Clayton and Hills

(1993) for the reasons why this is justified. Also, note that if we analyse this

expanded data set (with follow-up split into age groups) but omit age group

from the analysis we will get exactly the same answer as in the analysis using the

original intervals. This is because the number of events and the total follow-up

time are exactly the same in the original and expanded datasets.

Table 24.11 shows the total number of events (d ) and person-years (T ) in the

different age groups in the Caerphilly study, together with the rates per 1000

person-years and corresponding 95% confidence intervals. Rates of myocardial

infarction generally increased with increasing age.

Table 24.11 Rates of myocardial infarction in different age groups in the Caerphilly study.

Age group d T Rate per 1000 person-years 95% CI

45–49 12 1 627 7.376 4.189 to 12.989

50–54 42 4 271 9.833 7.267 to 13.305

55–59 73 6 723 10.858 8.632 to 13.657

60–64 102 7 115 14.336 11.807 to 17.406

65–69 76 4 287 17.726 14.157 to 22.195

70–74 30 1 872 16.029 11.207 to 22.926

75–79 13 266 48.958 28.428 to 84.315

This same approach may be used to examine any effect that may change over

time. For example:

� if repeat measurements of exposures are made on different occasions after

baseline, we may divide the follow-up time into the periods following each

measurement, with time-updated values of the exposure measured at the begin-

ning of each period.

� secular changes can be analysed by dividing time into different time periods (for

example, 1970 to 1974, 1975 to 1979, etc.).
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Joint effects may be investigated by dividing the period of follow-up according to

the values of two variables. Note that the way in which individuals move through

different categories of age group and time period may be displayed in a Lexis

diagram (see Clayton and Hills, 1993 or Szklo and Nieto, 2000).

In Section 27.5, we explain how Poisson regression with follow-up time split

into intervals is related to Cox regression analysis of survival data, and in Section

27.4 we discuss the criteria for choice of the time axis.
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25.1 INTRODUCTION

Death rates and disease incidence rates are usually strongly related to age, and

often differ for the two sexes. Population mortality and incidence rates therefore

depend critically on the age–sex composition of the population. For example, a

relatively older population would have a higher crude mortality rate than

a younger population even if, age-for-age, the rates were the same. It is therefore

misleading to use overall rates when comparing two different populations

unless they have the same age–sex structure. We saw in Chapter 23 how to use

Mantel–Haenszel methods and in Chapter 24 how to use Poisson regression to

compare rates between different groups after controlling for variables such as age

and sex.

We now describe the use of standardization and standardized rates to produce

comparable measures between populations or sub-groups, adjusted for major

confounders, such as any age–sex differences in the composition of the different

populations or subgroups. Mantel–Haenszel or regression methods should be used

to make formal comparisons between them.

There are two methods of standardization: direct and indirect, as summarized in

Table 25.1. Both use a standard population.

Table 25.1 Comparison of direct and indirect methods of standardization.

Direct standardization Indirect standardization

Method Study rates applied to standard

population

Standard rates applied to study

population

Data required

Study population(s) Age–sex specific rates Age–sex compositionþ total

deaths (or cases)

Standard population Age–sex composition Age–sex specific rates (þ overall

rate)

Result Age–sex adjusted rate Standardized mortality (morbidity)

ratio (þ age–sex adjusted rate)

CHAPTER 25

Standardization

25.1 Introduction

25.2 Direct standardization

25.3 Indirect standardization

25.4 Use of Poisson regression for

indirect standardization

Extension to several SMRs

AQ1



� In direct standardization, the age–sex specific rates from each of the populations

under study are applied to a standard population. The result is a set of stand-

ardized rates.

� In indirect standardization, the age–sex specific rates from a standard population

are applied to each of the study populations. The result is a set of standardized

mortality (or morbidity) ratios (SMRs).

The choice of method is usually governed by the availability of data and by their

(relative) accuracy. Thus, direct standardization gives more accurate results when

there are small numbers of events in any of the age–sex groups of the study

populations. The indirect method will be preferable if it is difficult to obtain

national data on age–sex specific rates.

Both methods can be extended to adjust for other factors besides age and sex,

such as different ethnic compositions of the study groups. The direct method can

also be used to calculate standardized means, such as age–sex adjusted mean blood

pressure levels for different occupational groups.

25.2 DIRECT STANDARDIZATION

Example 25.1

Table 25.2 shows the number of cases of prostate cancer and number of person-

years among men aged � 65 living in France between 1979 and 1996. The data are

shown separately for six 3-year time periods. Corresponding rates of prostate

cancer per 1000 person-years at risk (pyar) are shown in Table 25.3

Table 25.3 shows that the crude rates (those derived from the total number

of cases and person-years, ignoring age group) increased to a peak of

2.64=1000 pyar in 1988–90 and then declined. However Table 25.2 shows that

the age-distribution of the population was also changing during this time: the

number of person-years in the oldest (� 85 year) age group more than doubled

between 1979–81 and 1994–96, while increases in other age groups were more

modest. The oldest age group also experienced the highest rate of prostate cancer,

in all time periods.

Table 25.2 Cases of prostate cancer=1000 person-years among men aged � 65 living in France between 1979

and 1996.

Time period

Age group 1979–81 1982–84 1985–87 1988–90 1991–93 1994–96

65–69 2021=2970 1555=2197 1930=2686 2651=3589 2551=3666 2442=3764

70–74 3924=2640 3946=2674 3634=2272 2842=1860 3863=2703 4158=3177

75–79 5297=1886 5638=1946 6018=1980 6211=2028 4640=1598 4253=1659

80–84 4611=985 5400=1134 6199=1189 6844=1294 6926=1393 6412=1347

� 85 3273=478 3812=539 4946=616 6581=764 7680=878 8819=1003

Total 19126=8959 20351=8490 22727=8743 25129=9535 25660=10238 26084=10950
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Table 25.3 Rates of prostate cancer (per 1000 person-years) in men aged � 65 living in France between 1979

and 1996.

Time period

Age group 1979–81 1982–84 1985–87 1988–90 1991–93 1994–96

65–69 0.68 0.71 0.72 0.74 0.70 0.65

70–74 1.49 1.48 1.60 1.53 1.43 1.31

75–79 2.81 2.90 3.04 3.06 2.90 2.56

80–84 4.68 4.76 5.21 5.29 4.97 4.76

� 85 6.85 7.07 8.03 8.61 8.75 8.79

Crude rate 2.13 2.40 2.60 2.64 2.51 2.38

Standardized rate 2.35 2.40 2.60 2.64 2.54 2.39

This means that the overall rates in each time period need to be adjusted for

the age distribution of the corresponding population before they can meaningfully

be compared. We will do this using the method of direct standardization.

1 The first step in direct standardization is to identify a standard population. This

is usually one of the following:

� one of the study populations

� the total of the study populations

� the census population from the local area or country

The choice is to some extent arbitrary. Different choices lead to different

summary rates but this is unlikely to affect the interpretation of the results

unless the patterns of change are different in the different age group strata (see

point 5). Here we will use the number of person-years for the period 1985–87.

2 Second, for each of the time periods of interest, we calculate what would be the

overall rate of prostate cancer in our standard population if the age-specific

rates equalled those of the time period of interest. This is called the age

standardized survival rate for that time period.

Overall rate in standard population
Age standardized rate ¼ if the age-specific rates were the same ¼ �(wi�li)

�wias those of the population of interest

In the above definition, wi is the person-years at risk in age group i in the

standard population, li ¼ di=pyari is the rate in age group i in the time period of

interest and the summation is over all age groups. Note that this is simply a

weighted average (see Section 18.3) of the rates in the different age groups in the

time period of interest, weighted by the person-years at risk in each age group in

the standard population.
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Table 25.4 Calculating the age standardized rate of prostate cancer for 1979–81, using direct

standardization with the person-years during 1985–87 as the standard population.

Age group

Standard population:

thousands of person-

years in 1985–87, wi

Study population:

Rates in 1979–81, li

Estimated number of

cases in standard

population, wi � li

65–69 2686 0.6805 1827.8

70–74 2272 1.4864 3377.1

75–79 1980 2.8086 5561.0

80–84 1189 4.6812 5565.9

� 85 616 6.8473 4217.9

All ages �wi ¼ 8743 �(wi � li) ¼ 20549:8

Age adjusted rate ¼ 2.35

For example, Table 25.4 shows the details of the calculations for the age-

standardized rate for 1979–81, using the person-years in 1985–87 as the stand-

ard population. In the 65 to 69-year age group, applying the rate of 0.6805 per

1000 person-years to the 2686 person-years in that age group in the standard

population gives an estimated number of cases in this age group of

0:6805� 2686 ¼ 1827:8. Repeating the same procedure for each age group,

and then summing the numbers obtained, gives an overall estimate of 20549.8

cases out of the total of 8743 thousand person-years in the standard population:

an age-standardized rate for the study population of 2.35 per 1000 person-years.

3 The results for all the time periods are shown in the bottom row of Table 25.3.

The crude and standardized rates of prostate cancer in the different time periods

are plotted in Figure 25.1(a). This shows that the crude rate was lower than the

directly standardized rate in the 1979–81 period, but similar thereafter. This is

because, as can be seen in Table 25.2, in the 1979–81 period there were propor-

tionally fewer person-years in the oldest age groups, in which prostate cancer

death rates were highest.

4 The standard error for the standardized rate is calculated as:

Standard error of Standard error of

standardized rate standardized proportion

1

�wi

X w2
i di

(pyari)
2

� �s
1

�wi

Xw2
i pi(1� pi)

ni

� �s

4 where the left hand formula is used for standardized rates and the right hand

formula for standardized proportions. In these formulae the weights wi are the

person-years or number of individuals in the standard population. Using this

formula, the standard error of the standardized rate in 1979–81 is 0.017 per 1000

person-years, so that the 95% confidence interval for the standardized rate in

1979–81 is:
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95% CI ¼ 2:35� 1:96�0:017 to 2:35þ 1:96�0:017

¼ 2:32 to 2:38 per 1000 person-years

5 Finally, it is important to inspect the patterns of rates in the individual strata

before standardizing, because when we standardize we assume that the patterns

of change in the rates are similar in each stratum. If this is not the case then the

choice of standard population will influence the observed pattern of change in

the standardized rates. For example, in Figure 25.1(b) it can be seen that the

rate in the �85 year age group increased more sharply than the rates in the

other age groups. This means that the greater the proportion of individuals in

the �85 year age group in the standard population, the sharper will be the

increase in the standardized rate over time.

Fig. 25.1 (a) Crude and directly standardized rates of prostate cancer among men aged � 65 years living in

France between 1979 and 1986, with the population in 1985–87 chosen as the standard population. (b)

Time trends in age-specific rates of prostate cancer, among men aged � 65 years living in France between

1979 and 1986.
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25.3 INDIRECT STANDARDIZATION

Example 25.2

Table 25.5 shows mortality rates from a large one-year study in an area endemic

for onchocerciasis. One feature of interest was to assess whether blindness, the

severest consequence of onchocerciasis, leads to increased death rates. From the

results presented in Table 25.5 it can be seen that:

� not only does mortality increase with age and differ slightly between males and

females, but

� the prevalence of blindness also increases with age and is higher for males than

for females.

The blind sub-population is therefore on average older, with a higher proportion

of males, than the non-blind sub-population. This means that it would have a

higher crude mortality rate than the non-blind sub-population, even if the indi-

vidual age–sex specific rates were the same. An overall comparison between the

blind and non-blind will be obtained using the method of indirect standardization.

1 As for direct standardization, the first step is to identify a standard population.

The usual choices are as before, with the restrictions that age–sex specific

mortality rates are needed for the standard population and that the population

chosen for this should therefore be large enough to have reliable estimates of

these rates. In this example the rates among the non-blind will be used.

2 These standard rates are then applied to the population of interest to calculate

the number of deaths that would have been expected in this population if the

mortality experience were the same as that in the standard population.

For example, in stratum 1 (males aged 30–39 years) one would expect a

proportion of 19=2400 of the 120 blind to die, if their risk of dying was the

same as that of the non-blind males of similar age. This gives an expected 0.95

deaths for this age group. In total, 22.55 deaths would have been expected

among the blind compared to a total observed number of 69.

3 The ratio of the observed to the expected number of deaths is called the standard-

ized mortality ratio (SMR). It equals 3.1 (69=22.55) in this case. Overall, blind

persons were 3.1 times more likely to die during the year than non-blind persons.

Standardized

mortality

ratio (SMR)

¼ observed number of deaths

expected number of deaths if the

age�sex specific rates were the same

¼ �di
�Ei

as those of the standard population

The SMR measures how much more (or less) likely a person is to die in the

study population compared to someone of the same age and sex in the standard

population. A value of 1 means that they are equally likely to die, a value larger
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than 1 that they are more likely to die, and a value smaller than 1 that they

are less likely to do so. The SMR is sometimes multiplied by 100 and expressed

as a percentage. Since the non-blind population was used as the standard,

its expected and observed numbers of deaths are equal, resulting in an SMR

of 1.

4 The 95% confidence interval for the SMR is derived using an error factor (EF)

in the same way as that for a rate ratio (see Section 23.2):

95% CI ¼SMR=EF to SMR� EF, where

EF ¼ exp(1:96= di
p

)

In this example, EF ¼ exp(1:96= 6
p

9) ¼ 1:266, and the 95% confidence interval

for the SMR is:

95% CI ¼ SMR

EF
to SMR� EF ¼ 3:06=1:266 to 3:06� 1:266 ¼ 2:42 to 3:87

5 Age–sex adjusted mortality rates may be obtained by multiplying the SMRs by

the crude mortality rate of the standard population, when this is known. This

gives age–sex adjusted mortality rates of 12.8 and 39.7=1000=year for the non-

blind and blind populations respectively.

Age�sex adjusted ¼ SMR � crude mortality rate of

mortality rate standard population

25.4 USE OF POISSON REGRESSION FOR INDIRECT

STANDARDIZATION

We may use Poisson regression to derive the SMR, by fitting a model with:

� each row of data corresponding to the strata in the study population;

� the number of events in the study population as the outcome. In Example 25.2

this would be the number of deaths in the blind population;

� no exposure variables (a ‘constant-only’ model);

� specifying the expected number of events in each stratum (each row of the data),

instead of the number of person-years, as the offset in the model. In Example

25.2, these are the expected number of deaths given in the right hand column of

Table 25.5.

Table 25.6 shows the output from fitting such a model to the data in Example

25.2. The output is on the log scale, so the SMR is calculated by antilogging the
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Table 25.6 Poisson regression output (log scale), using the expected number of deaths in the blind population as

the offset.

Coefficient s.e. z P > jzj 95% CI

Constant 1.1185 0.1204 9.29 0.000 0.8825 to 1.3544

coefficient for the constant term. It equals exp(1:1185) ¼ 3:1, the same as the value

calculated above.

SMR ¼ exp(regression coefficient for constant term)

The 95% CI for the SMR is derived by antilogging the confidence interval for

the constant term. It is exp(0:8825) to exp(1:3544) ¼ 2:42 to 3:87. It should be

noted that indirect standardization assumes that the age–sex specific rates in

the standard population are known without error. Clearly this is not true in the

example we have used: the consequence of this is that confidence intervals for the

SMR derived in this way will be somewhat too narrow. For comparison, a

standard Poisson regression analysis of the association between blindness and

death rates for the data in Table 25.5 gives a rate ratio of 3.05, and a 95% CI of

2.24 to 4.15.

Extension to several SMRs

It is fairly straightforward to extend this procedure to estimate, for example, the

SMRs for each area in a geographical region by calculating the observed and

expected number of deaths in each age–sex stratum in each area, and fitting a

Poisson regression model including indicator variables for each area, and omitting

the constant term. The SMRs would then be the antilogs of the coefficients for the

different area indicator variables.
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26.1 INTRODUCTION

The methods described so far in this part of the book assume that rates are

constant over the period of study, or within time periods such as age groups

defined by splitting follow-up time as described in Section 24.6. However, in

longitudinal studies in which there is a clear event from which subjects are

followed, such as diagnosis of a condition or initiation of treatment, it may not

be reasonable to assume that rates are constant, even over short periods of time.

For example:

� the risk of death is very high immediately after heart surgery, falls as the patient

recovers, then rises again over time;

� the recurrence rate of tumours, following diagnosis and treatment of breast

cancer, varies considerably with time.

Methods for survival analysis allow analysis of such rates without making the

assumption that they are constant. They focus on:

1 the hazard h(t): the instantaneous rate at time t. They do not assume that the

hazard is constant within time periods;

2 the survivor function S(t), illustrated by the survival curve. This is the probabil-

ity that an individual will survive (i.e. has not experienced the event of interest)

up to and including time t.

We start by describing two ways of estimating the survival curve; life tables and

the Kaplan–Meier method. We will then explain the proportional hazards as-

sumption, and discuss how to compare the survival of two groups using Mantel–

Cox methods. In the next chapter we will discuss regression analysis of survival
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data. We will see that these methods are closely related to, and often give similar

results to, the Mantel–Haenszel and Poisson regression methods for the analysis

of rates.

In Chapter 22 we stated that survival times for subjects who are known to

have survived up to a certain point in time, but whose survival status past that

point is not known, are said to be censored. Throughout this and the next chapter

we will assume that the probability of being censored (either through loss to

follow-up or because of death from causes other than the one being studied) is

unrelated to the probability that the event of interest occurs. If this assumption is

violated then we say that there is informative censoring, and special methods must

be used.

26.2 LIFE TABLES

Life tables are used to display the survival pattern of a community when we do not

know the exact survival time of each individual, but we do know the number of

individuals who survive at a succession of time points. They may take one of two

different forms. The first, a cohort life table, shows the actual survival of a group

of individuals through time. The starting point from which the survival time is

measured may be birth, or it may be some other event. For example, a cohort life

table may be used to show the mortality experience of an occupational group

according to length of employment in the occupation, or the survival pattern of

patients following a treatment, such as radiotherapy for small-cell carcinoma of

bronchus (Table 26.1). The second type of life table, a current life table, shows the

expected survivorship through time of a hypothetical population to which current

age-specific death rates have been applied. Historically, this was more often used

for actuarial purposes and was less common in medical research. In recent times,

this approach has been used to model the burden of disease due to different causes

and conditions (Murray & Lopez, 1996).

Example 26.1

Table 26.1 shows the survival of patients with small-cell carcinoma of bronchus,

month by month following treatment with radiotherapy. This table is based on

data collected from a total of 240 patients over a 5 year period. The data them-

selves are summarized in columns 1–4 of the life table; the construction of a cohort

life table is shown in columns 5–8.

Column 1 shows the number of months since treatment with radiotherapy

began. Columns 2 and 3 contain the number of patients alive at the beginning

of each month and the number who died during the month. For example, 12 of the

240 patients died during the first month of treatment, leaving 228 still alive at the

start of the second month. The number of patients who were censored during each

month (known to have survived up to month i but lost to follow-up after that

time) is shown in column 4. The total number of persons at risk of dying during

the month, adjusting for these losses, is shown in column 5. This equals the
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number alive at the beginning of the month minus half the number lost to follow-

up, assuming that on average these losses occur half-way through the month.

Column 6 shows the risk of dying during a month, calculated as the number of

deaths during the month divided by the number of persons at risk. Column 7

contains the complementary chance of surviving the month.

Column 8 shows the cumulative chance of surviving. This is calculated by

applying the rules of conditional probability (see Chapter 14). It equals the chance

of surviving up to the end of the previous month, multiplied by the chance of

surviving the month. For example, the chance of surviving the first month was

0.9500. During the second month the chance of surviving was 0.9605. The overall

chance of surviving two months from the start of treatment was therefore

0:9500� 0:9605 ¼ 0:9125. In this study all the patients had died by the end of

18months.

More generally, the cumulative chance of surviving to the end of month i is

given by:

S(i) ¼ chance of surviving to month (i � 1)� chance of surviving month i

¼ S(i � 1)� si or s1 � s2 � . . .� si

These are the probabilities S(i) of the survivor function. The survival curve is

illustrated in Figure 26.1.

Fig. 26.1 Survival curve for patients with small-cell carcinoma of the bronchus treated with radiotherapy,

drawn from life table calculations presented in Table 26.1.
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Confidence interval for the survival curve

The 95% confidence interval for each S(i) is derived using an error factor (see

Kalbfleisch & Prentice, 1980, pp. 14, 15 for details) as follows:

95% CI ¼ S(t)(1=EF) to S(t)EF, where

EF ¼ exp 1:96� [�d=(n(n� d))]
p

[� log((n� d)=n)]2

� �

In this formula, the summations are over all the values of d and n, up to and

including time interval i. Figure 26.1 includes the 95% confidence intervals calcu-

lated in this way, using the data in columns 3 and 5 of Table 26.1. Because

derivation of such confidence intervals involves a substantial amount of calcula-

tion, it is usually done using a statistical computer package.

Life expectancy

Also of interest is the average length of survival, or life expectancy, following the

start of treatment. This may be crudely estimated from the survival curve as the

time corresponding to a cumulative probability of survival of 0.5, or it may be

calculated using columns 1 and 8 of the life table. For each interval, the length of

the interval is multiplied by the cumulative chance of surviving. The total of these

values plus a half gives the life expectancy. (The addition of a half is to allow for

the effect of grouping the life table in whole months and is similar to the continuity

corrections we have encountered in earlier chapters.)

Life expectancy ¼ 0:5 þ
X length of

interval
� cumulative chance

of survival

� �

In Table 26.1 all the intervals are of 1month and so the life expectancy is simply

the sum of the values in column 8 plus a half, which equals 7.95months.

26.3 KAPLAN–MEIER ESTIMATE OF THE SURVIVAL CURVE

In many studies we know the exact follow up time (for example, to within 1 day)

for each individual in the study, and may therefore wish to estimate the survivor

function S(t) using this information rather than by dividing the survival time into

discrete periods, as is done in the life table method. This avoids the assumption

that individuals lost to follow-up are censored half way through the interval. The
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difference between the approaches is likely to be minimal if the periods in the life

table are short, such as 1month, but for longer periods (such as 1 year) infor-

mation is likely to be lost by grouping.

The estimate using exact failure and censoring times is known as the Kaplan–

Meier estimate, and is based on a similar argument to that used in deriving life

tables. To derive the Kaplan–Meier estimate, we consider the risk sets of individ-

uals still being studied at each time, t, at which an event occurs. If there are nt

individuals in the risk set at time t, and dt events occur at that precise time then the

estimated risk, rt, of an event at time t is dt=nt, and so the estimated survival

probability at time t is:

st ¼ 1� rt ¼ nt � dt

nt

At all times at which no event occurs, the estimated survival probability is 1.

To estimate the survivor function, we use a similar conditional probability

argument to that used in deriving life tables. We number the times at which

disease events occur as t1, t2, t3 and so on. Since the estimated survival probabil-

ity until just before t1 is 1:

S(t1) ¼ 1� st1 ¼ st1

The survival probability remains unchanged until the next disease event, at time t2.

The survivor function at this time t2 is:

S(t2) ¼ S(t1)� st2 ¼ st1 � st2

In general, the survival probability up to and including event j is:

S(tj) ¼ S(t(j�1))� stj ¼ st1 � st2 � . . .� stj

This is known as the product-limit formula. Note that loss to follow-up does not

affect the estimate of survival probability: the next survival probability is calcu-

lated on the basis of the new denominator, reduced by the number of subjects lost

to follow-up since the last event.

Example 26.2

The examples for the rest of this chapter are based on data from a randomized

trial (see Chapter 34) of Azathioprine for primary biliary cirrhosis, a chronic and

eventually fatal liver disease (Christensen et al., 1985). The trial was designed to
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compare an active treatment, Azathioprine, against placebo. Between October

1971 and December 1977, 248 patients were entered into the trial and followed for

up to 12 years. A total of 184 patients had the values of all prognostic variables

measured at baseline. Of these, 31 had central cholestasis (a marker of disease

severity) at entry. Among these 31 patients there were 24 deaths, and 7 losses to

follow-up, as shown in Table 26.2.

The first death was at 19 days, so the risk of death at 19 days was

r19 ¼ 1=31 ¼ 0:0323. The survival probability at 19 days is therefore s19 ¼ 1

� 0:0323 ¼ 0:9677, and the survivor function S(19) ¼ s19 ¼ 0:9677. The next

death was at 48 days; at this point 30 patients were still at risk. The risk of death

at 48 days was r48 ¼ 1=30 ¼ 0:0333. The survival probability at 48 days is there-

fore s48 ¼ 1� 0:0333 ¼ 0:9667, and the survivor function S(48) ¼ s19 � s48

¼ 0:9355. Similarly, the estimate of the survivor function at 96 days is

s19 � s48 � s96 ¼ 0:9677� 0:9667� 0:9655 ¼ 0:9032, and so on.

Displaying the Kaplan–Meier estimate of S(t)

The conventional display of the Kaplan–Meier estimate of the survival curve for

the 31 patients with central cholestasis is shown in Figure 26.2. The survival curve

is shown as a step function; the curve is horizontal at all times at which there is no

outcome event, with a vertical drop corresponding to the change in the survivor

function at each time when an event occurs. At the right-hand end of the curve,

when there are very few patients still at risk, the times between events and the

drops in the survivor function become large, because the estimated risk (rt ¼ dt=nt)

is large at each time t at which an event occurs, as nt is small. The survivor

function should be interpreted cautiously when few patients remain at risk.

Confidence interval for the survival curve

Confidence intervals for S(t) are derived in the same way as described earlier for

life tables.

26.4 COMPARISON OF HAZARDS: THE PROPORTIONAL HAZARDS

ASSUMPTION

The main focus of interest in survival analysis is in comparing the survival patterns

of different groups. For example, Figure 26.3 shows the Kaplan–Meier estimates

of the survivor functions for the two groups of patients with and without central

cholestasis at baseline. It seems clear that survival times for patients without

central cholestasis at baseline were much longer, but how should we quantify

the difference in survival? The differences between the survival curves are obvi-

ously not constant. For example both curves start at 1, but never come together
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Fig. 26.2 The Kaplan–Meier estimate of the survivor function, S(t), together with upper and lower

confidence limits, for 31 patients with primary biliary cirrhosis and central cholestasis.

Fig. 26.3 Kaplan–Meier estimates of the survivor function, S(t), for primary biliary cirrhosis patients with

and without and central cholestasis at baseline.

again. With two groups followed until everyone has died, both survival curves will

also finish at 0; yet one group may have survived on average much longer than the

other.
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We solve the problem of allowing for differences in survival time by comparing

the hazards in the two groups over the duration of follow-up. As noted at the

beginning of this chapter, in survival analysis we avoid the assumption that the

hazards of the event of interest are constant over the study period. Instead, we

assume that the ratio of the hazards in the two groups remains constant over time,

even if the underlying hazards change. In other words, we assume that at all times t:

h1(t)

h0(t)
¼ constant

where h1(t) is the hazard in the exposed group at time t and h0(t) is the hazard in

the unexposed group at time t. This important assumption is known as the

proportional hazards assumption.

Examining the proportional hazards assumption

We now see how this assumption may be examined graphically. It is difficult to

estimate the hazard directly from data, since this would give a series of ‘spikes’

when an event occurs, interspersed with zeros when there is no disease event.

Instead we use the cumulative hazard function, H(t). This is the total hazard

experienced up to time t, and is estimated by the sum of the risks at each time i

at which an event occurs.

H(t) ¼ �
di

ni
, summed over all times up to and including t

This is known as the Nelson–Aalen estimate of the cumulative hazard function. It

follows from the definition of the cumulative hazard that the hazard function is

the slope in a graph of cumulative hazard against time, so we can examine the way

in which the hazard varies with time by examining how the slope of the cumulative

hazard varies with time.

If the ratio of the hazards in the exposed and unexposed groups is constant over

time, it follows that the ratio of the cumulative hazard functions must also equal

this constant:

H1(t)

H0(t)
¼ h1(t)

h0(t)
¼ constant

And that, applying the rules of logarithms:
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log(H1(t))� log(H0(t)) ¼ log(constant)

Therefore, if the proportional hazards assumption is correct then graphs of the log

of the cumulative hazard function in the exposed and unexposed groups will be

parallel.

Figure 26.4 shows the log cumulative hazard against time since start of treat-

ment for primary biliary cirrhosis patients with and without central cholestasis at

baseline. It suggests that there is no major violation of the proportional hazards

assumption, since the lines appear to be reasonably parallel. In this example time

has been plotted on a log scale to stretch out the early part of the time scale,

compared to the later, because more events occur at the beginning of the study

than near the end. Note, however, that this does not affect the relative positioning

of the lines; they should be parallel whether time is plotted on a log scale or on the

original scale.

It can be shown mathematically that that the cumulative hazard is related to the

survival function by the following formulae:

H(t) ¼ � log(S(t)), or equivalently

S(t) ¼ e�H(t)

Because of this, graphs of log(� log(S(t))) are also used to examine the propor-

tional hazards assumption.

Fig. 26.4 Cumulative hazard (log scale) against time (log scale) for primary biliary cirrhosis patients with

and without central cholestasis at baseline, in order to check the proportional hazards assumption.
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Links between hazards, survival and risks when rates are constant

In Section 22.3 we described the relationship between risks and rates, and noted

that when the event rate, l, is constant over time then the proportion of the

population event-free decreases exponentially over time. This proportion is

exactly the same as the survivor function, S(t). In the box below we extend the

set of relationships to include the hazard, and cumulative hazard. Note that the

hazard is constant over time, and that the cumulative hazard increases linearly

over time. This is in contrast to the risk which does not increase at a steady pace;

its rate of increase decreases with time.

When the event rate, l, is constant over time:

h(t) ¼ l

H(t) ¼ lt

S(t) ¼ e�lt

Risk up to time t ¼ 1� e�lt

Average survival time ¼ 1=l

26.5 COMPARISON OF HAZARDS USING MANTEL–COX METHODS:

THE LOG RANK TEST

Mantel–Cox estimate of the hazard ratio

The Mantel–Cox method is a special application of the Mantel–Haenszel proced-

ure, in which we construct a separate 2� 2 table for each time at which an event

occurs. It combines the contributions from each table, assuming that the hazard

ratio is constant over the period of follow-up. We will use the same notation as

that given in Table 18.3. Usually, there is only one event at a particular time, so in

each table either d1i is 0 and d0i is 1 or vice-versa, but the procedure also works if

there are ties (more than one event at a particular time). TheMantel–Cox estimate

of the hazard ratio is given by:

HRMC ¼ Q=R, where

Q ¼ �
d1i � h0i

ni
and R ¼ �

d0i � h1i

ni
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Standard error and confidence interval of the Mantel–Cox HR

The standard error of log HRMC is:

s:e:MC ¼ V=(Q� R)ð Þp
, where

V ¼ �Vi ¼ �
di � n0i � n1i

n2i

V is the sum across the strata of the variances Vi for the number of exposed

individuals experiencing the outcome event.

This may be used to derive a 95% confidence interval for HRMC in the usual

way:

95% CI ¼ HRMC=EF to HRMC � EF, where

EF ¼ exp(1:96� s:e:MC)

Mantel–Cox x2 (or log rank) test

Finally, we test the null hypothesis that HRMC ¼ 1 by calculating theMantel–Cox

x2 statistic, which is based on comparisons in each stratum of the number of

exposed individuals observed to have experienced the event (d1i), with the expected

number in this category (E1i) if there were no difference in the hazards between

exposed and unexposed. Note that �2
MC has just 1 degree of freedom irrespective of

how many events occur.

�2
MC ¼ U2

V
; d:f : ¼ 1, where

U ¼ �(d1i � E1i), and E1i ¼ di � n1i

ni

This x2 test is also known as the log rank test; the rather obscure name comes from

an alternative derivation of the test.

Example 26.3

In the trial of survival in primary biliary cirrhosis patients, there were 72 deaths

among the 153 patients without central cholestasis at baseline, and 24

deaths among the 31 patients with central cholestasis at baseline. Table 26.3

AQ4
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shows the calculations needed to derive the Mantel–Cox hazard ratio and associ-

ated log rank test statistic for the first 15 days on which one or more deaths

occurred, together with the total values of U, V, Q and R for the whole dataset.

The estimated hazard ratio is Q=R ¼ 21:224=5:538 ¼ 3:833. The interpretation

is that, on average, the hazard in patients with central cholestasis at baseline was

3.833 times the hazard in patients without central cholestasis.

The standard error of the log hazard ratio is

[
p

V=(Q� R)] ¼ [
p

7:387=(21:224� 5:538)] ¼ 0:2507

The error factor is therefore exp(1:96� 0:2507) ¼ 1:635, so that the 95% CI for

the hazard ratio is 2.345 to 6.264. The (log rank) x2 statistic is:

x2MC ¼ 15:6862

7:387
¼ 33:31, P < 0:001

There is thus strong evidence that the hazard rates, and hence survival rates,

differed between the two groups.

These methods can also be extended to adjust for different compositions of the

different groups, such as different sex ratios or different age distributions. For

instance, we could stratify additionally on sex, and apply the method in the same

way.
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27.1 INTRODUCTION

We now describe Cox regression, also known as proportional hazards regression.

This is the most commonly used approach to the regression analysis of survival

data. It uses the same approach as the Mantel–Cox method described in Section

26.5:

� it assumes that the ratio of the hazards comparing different exposure groups

remains constant over time. This is known as the proportional hazards assump-

tion;

� it is based on considering the risk sets of subjects still being followed up at each

time that an event occurred. At the time of each event, the values of the

exposure variables for the subject who experienced the disease event are com-

pared to the values of the exposure variables for all the other subjects still being

followed and who did not experience the disease event.

After introducing Cox regression, we then consider:

� what to do when the proportional hazards assumption does not appear to hold;

� the way in which the choice of time axis influences the nature of the risk sets;

� the link between Cox and Poisson regression;

� the use of parametric survival models as an alternative approach.

General issues in regression modelling, including fitting linear effects and testing

hypotheses, are discussed in more detail in Chapter 29.

27.2 COX REGRESSION

The mathematical form of the Cox proportional hazards model is:

Log(h(t)) ¼ log(h0(t))þ �1x1 þ �2x2 þ . . .þ �pxp
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where h(t) is the hazard at time t, h0(t) is the baseline hazard (the hazard for an

individual in whom all exposure variables ¼ 0) at time t, and x1 to xp are the p

exposure variables.

On the ratio scale the model is:

h(t) ¼ h0(t)� exp(�1x1 þ �2x2 þ . . .þ �pxp)

When there is a single exposure variable (x1) and just two exposure groups (x1 ¼ 1

for exposed individuals and 0 for unexposed individuals) the model is described by

two equations, as shown in Table 27.1.

The hazard ratio comparing exposed with unexposed individuals at time t is

therefore:

HR(t) ¼ h0(t) exp(�1)

h0(t)
¼ exp(�1)

The model thus assumes that the hazard ratio remains constant over time; it

equals exp(�1). It is this assumption that is highlighted in the name ‘proportional

hazards’ regression. The regression coefficient �1 is the estimated log hazard ratio

comparing exposed with unexposed individuals.

Table 27.1 Equations defining the Cox regression model for the

comparison of two exposure groups, at time t.

Exposure group Log(Hazard at time t) Hazard at time t

Exposed (x1 ¼ 1) log(h0(t))þ �1 h0(t)� exp(�1)

Unexposed (x1 ¼ 0) log(h0(t)) h0(t)

Example 27.1

Table 27.2 shows the output from a Cox regression analysis of the effect of central

cholestatis at baseline (variable name cencho0) in primary biliary cirrhosis pa-

tients. There is clear evidence that this increased the hazard rate. The results are

very similar to the Mantel–Cox estimate of the hazard ratio (3.833, 95%

CI¼ 2.345 to 6.264), derived in Section 26.5. The square of the Wald z-test statistic

is 5:3872 ¼ 29:02, similar to but a little smaller than the log rank �2 statistic of

33.31, derived in Section 26.5. Three points should be noted:

1 Cox regression analysis is based on a conditional likelihood estimation procedure,

in which the values of the exposure variables are compared between individuals

within the risk sets of individuals being followed at each time at which
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Table 27.2 Cox regression output for the model for the effect of central

cholestasis at baseline in the study of survival in patients with primary biliary

cirrhosis, introduced in Example 26.2.

Hazard ratio z P > jzj 95% CI

cencho0 3.751 5.387 0.000 2.319 to 6.067

an event occurs. The baseline hazard (which can vary over time) is therefore not

estimated and is not displayed.

2 As explained earlier, the model is based on the proportional hazards assump-

tion. This assumption may be investigated graphically, as described in Section

26.4. Alternatively, statistical tests of the proportional hazards assumption are

available, as discussed below.

3 As with all regression models, it is straightforward to estimate the effect of more

than one exposure variable. As usual, we assume that the effects of different

exposures combine in a multiplicative manner: this was explained in detail in

Section 20.2, in the context of logistic regression. On the basis of this assump-

tion, we may interpret the estimated effect of each exposure variable as the

effect after controlling for the confounding effects of other exposure variables in

the model. This assumption may be examined by fitting interaction terms (see

Section 29.4).

27.3 NON-PROPORTIONAL HAZARDS

Non-proportional hazards correspond to an interaction between the exposure

variable and time: in other words the exposure effect (hazard ratio) changes

over time. In addition to the graphical examination of proportional hazards

described in Section 26.4, many software packages provide statistical tests of the

proportional hazards assumption. Three analysis options when evidence of non-

proportional hazards is found are:

1 Extend the model to include an exposure-time interaction term. For example,

for a single binary exposure variable, the model could assume:

hazard ratio ¼ exp(�1 þ �2t)

In theory, there is no reason that complex changes of the exposure hazard ratios

over time should not be modelled. However, not all statistical software will

allow this.

2 If the variable for which there is evidence of non-proportional hazards is a

confounder, rather than the main exposure of interest, then the regression may

be stratified according to the values of this confounding variable. This modifies

the risk sets, so that they include only individuals with the same value of the

confounding variable. The effect of the confounder is not estimated, but its

effects are controlled for without assuming proportional hazards.
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3 Split the follow-up time into different periods, as described in Section 24.6. It is

then straightforward to fit models that allow the exposure effect to differ

between time periods. Splitting follow-up time can also be used to derive tests

of the proportional hazards assumption, by looking for interactions between

exposure and time period (see Section 29.4 for a description of tests for inter-

action in regression models).

27.4 CHOICE OF TIME AXIS IN SURVIVAL ANALYSES

When following subjects after diagnosis or treatment of a disease, it may

be reasonable to suppose that the major determinant of variation in the hazard

will be the time since diagnosis or treatment. This was the assumption we made

in the study of primary biliary cirrhosis, when we examined patients from the

time they were treated. Our risk sets were constructed by considering all

subjects who were at risk at the times after the start of treatment at which events

occurred.

However, there are different options for the choice of time axis which may be

more suitable in other situations. For example, consider the Caerphilly study of

risk factors for cardiovascular disease, in which the dates of the first examinations

took place between July 1979 and October 1983, and participants were aged

between 43 and 61 when they were first examined. There are three possible choices

for the time scale for construction of risk sets:

1 time since recruitment to the study;

2 time since birth (i.e. age);

3 year of the study (i.e. date).

Each of these choices will lead to different risk sets (sets of subjects at risk when an

event occurred) at the times at which events occur. We illustrate the differences

between these time scales using ten patients randomly chosen from the Caerphilly

study. Their dates of birth, entry to, and exit from, the study, together with the

corresponding ages and time in the study are shown in Table 27.3.

Table 27.3 Dates and ages of entry to, and exit from, the Caerphilly study for ten randomly selected subjects.

Subject

number Date of birth

Date of first

examination Date of exit

Age at

entry Age at exit

Years in

study (T) MI

151 20 Oct 1931 30 May 1980 18 Dec 1998 48.61 67.16 18.55 0

158 21 Mar 1933 2 Dec 1981 9 May 1984 48.70 51.13 2.43 1

658 12 Aug 1925 22 Oct 1981 18 Jul 1996 56.19 70.93 14.74 1

941 28 Oct 1933 29 May 1982 19 Dec 1998 48.58 65.14 16.56 0

1376 19 Sep 1935 21 Mar 1982 25 Nov 1998 46.50 63.18 16.68 0

1467 9 Jan 1930 6 Jul 1982 3 Aug 1993 52.49 63.56 11.08 0

1650 19 Nov 1927 24 Nov 1982 31 Dec 1998 55.01 71.12 16.10 0

1673 14 Feb 1926 3 Jul 1983 31 Dec 1998 57.38 72.88 15.50 0

1754 21 Jul 1921 1 Oct 1980 31 Dec 1998 59.20 77.45 18.25 0

1765 27 Mar 1924 30 Dec 1982 13 Dec 1998 58.76 74.71 15.95 0
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The risk sets corresponding to the three different choices of time axis

are illustrated in Figure 27.1. The horizontal lines represent the follow-up

time for each subject. The follow-up line ends in a closed circle for subjects

who experienced an MI (numbers 158 and 658). It ends in an open circle

for subjects who were censored, either because they were lost to follow-up (subject

1467 on 3 August 1993), or because they were still healthy at the time of

their end of study follow-up in November or December 1998 (the other

seven subjects). Subjects whose follow-up is intersected by the dotted vertical

lines, at the times of the MIs, are members of the risk set for that MI, i.e.

those with whom the covariates of the patient who experienced the MI are

compared.

1 Risk sets corresponding to time from entry to the study, Figure 27.1(a): at the

time of the first MI all subjects were still being followed and are therefore in the

risk set, while at the time of the second MI all subjects except 158 and 1467 are

in the risk set.

The majority of published applications of Cox regression use this choice, in

which all subjects start at time 0. This is partly because Cox regression was

originally developed for data on survival following a defined event, and also

because until recently most computer programs for Cox regression insisted that

all subjects enter at time 0. However, there is no reason why risk sets should not

be constructed on the basis of delayed entry, and some statistical packages now

allow flexible choices of time axis in Cox regression. In contrast, choices (2) and

(3) both imply that subjects enter the study at different times, as well as having

different periods of follow-up.

2 Risk sets corresponding to choosing age as the time axis, Figure 27.1(b): these

consist of all subjects who were still being followed at a time when they were the

same age as that of the subject who experienced the MI. Since subject 158 was

relatively young when he experienced his MI, only three other subjects are

members of this risk set. Similarly only four other subjects are members of the

risk set for subject 658.

3 Risk sets corresponding to choosing calendar time as the time axis, Figure

27.1(c): in this example, because subjects were recruited over a relatively short

period, the risk sets are the same as for (a), but in general this need not be the

case.

Criteria for choice of time axis

In general, the best choice of time axis in survival analysis will be the scale over

which we expect the hazard to change most dramatically. In studies of survival

following diagnosis of a disease such as cancer, the best time axis is usually time

since recruitment (start of study). Calendar time would be a sensible choice in

studies of survival following an environmental disaster, such as the leak of

poisonous fumes from a factory, which occurred at a particular time. In contrast,

recruitment to the Caerphilly study did not depend on the participant experiencing
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Fig. 27.1 Risk sets corresponding to three different choices of time axis, for ten patients randomly chosen

from the Caerphilly study. The follow-up line ends in a closed circle for subjects who experienced an MI and

an open circle for subjects who were censored. The dotted vertical lines show the risk sets at the time of

each MI for the different choices of time axis.
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a particular event: simply on the person living in Caerphilly and being in later

middle age at the time the study was established. Therefore measuring time from

recruitment to the study does not seem a sensible choice of time axis: in this case

age is a better choice.

More than one time axis

Finally, we may wish to do a Cox regression that allows for the effect of more than

one variable to change over time. There are two main reasons for doing this:

1 we may want to allow for changing rates of disease according to, say, age group,

while keeping time since an event such as diagnosis of disease as the time axis

used to define the risk sets;

2 we may want to allow for the effect of exposures which are measured more than

once, and estimate the association of the most recent exposure measurement

with rates of disease.

The procedure is the same in each case. We simply split the follow-up time for each

subject into periods defined by (1) age group, or (2) the time between exposure

measurements, in the same way as described at the end of Section 24.6. Providing

that the software being used for Cox regression will allow for delayed entry, we

then fit a standard Cox regression model, controlling for the effects of the time-

varying exposures.

27.5 LINKS BETWEEN POISSON REGRESSION AND COX REGRESSION

We have described two different regression models for the analysis of longitudinal

studies. In Poisson regression we assume that rates are constant within time

periods, and estimate rate ratios comparing exposed with unexposed groups. In

Cox regression we make no assumptions about how the hazard changes over time;

instead we estimate hazard ratios comparing different exposure groups. This is

done by constructing risk sets, which consist of all subjects being followed at the

time at which each event occurs, and assuming that the hazard ratio is the same

across risk sets.

At the end of Chapter 24 we saw that we may allow for variables which

change over time in Poisson regression by splitting the follow-up time, for example

into 5-year age groups, and estimating the rate ratio separately in each time

period, compared to a baseline period. This is illustrated in Figure 27.2, using

5-year age groups, for the ten subjects from the Caerphilly study. We consider the

total number of events, and total length of follow-up, in each age group. Now

suppose that we make the age groups smaller (1-year, say). Only age groups in

which an event occurs will contribute to the analysis, and the follow-up time

within each of these groups will be approximately equal. As we make the time

intervals progressively shorter, we will be left with the risk sets analysed in Cox

regression.
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Fig. 27.2 Follow-up split into 5-year age groups, for ten subjects from the Caerphilly study.

27.6 PARAMETRIC SURVIVAL MODELS

Parametric survival models are an alternative regression approach to the analysis

of survival data in which, instead of ignoring the hazard function, as in Cox

proportional hazards models, we model the survivor function in the baseline

group using one of a choice of mathematical functions. For example, we have

already seen in Sections 22.3 and 26.4 that if the rate (hazard) is constant over time

then the survivor function is exponential. This is exactly the assumption of

Poisson regression, which means that it is therefore identical to a parametric

survival model assuming an exponential survivor function. Other commonly

used survivor function distributions are the Weibull, Gompertz, gamma, lognor-

mal and log-logistic functions. Weibull models assume proportional hazards and

usually give very similar estimated hazard ratios to those from Cox models.

Because parametric survival models explicitly estimate the survivor function

they may be of particular use when the aim of a study is to predict survival

probabilities in different groups. For more details, see Cox and Oakes (1984) or

Collett (2003).
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PART E

STATISTICAL MODELLING

Previous parts of the book have discussed methods of analysis according to the

different types of outcome (and exposure) variables. An understanding of what

statistical method is appropriate given the type of data that have been collected is

obviously crucial, but it is also important to realize that different statistical

methods have much in common, so that an understanding of one method helps

in understanding others. For example, the interpretation of confidence intervals

and P-values follows the same logic, regardless of the particular situation in which

they are derived. We have seen that computer output from different regression

models is presented in a similar way, and issues such as testing hypotheses,

examining interactions between exposure effects and selection of the most appro-

priate model also apply to all regression models.

In this part of the book we present statistical methods that apply to many types

of exposure and outcome variables. We begin, in Chapter 28, by introducing

likelihood: the concept that underlies most commonly used statistical methods.

In Chapter 29 we consider general issues in regression modelling, including the use

of likelihood ratio tests of hypotheses about the parameters of regression models.

Chapter 30 introduces methods that can be used when the usual model assump-

tions are violated: these provide a means of checking the robustness of results

derived using standard methods. A common situation in which standard assump-

tions are violated is when data are clustered; that is when observations on

individuals within a cluster tend to be more similar to each other than to individ-

uals in other clusters. Failure to take account of clustering can lead to confidence

intervals that are too narrow, and P-values that are too small. Chapter 31

introduces methods that are appropriate for the analysis of such data.

Chapter 32 focuses on how evidence can be summarized on a particular subject

in order to make it accessible to medical practitioners and inform the practice of

evidence-based medicine. In particular it covers systematic reviews of the medical

literature, the statistical methods which are used to combine effect estimates from

different studies (meta-analysis), and sources of bias in meta-analysis and how

these may be detected.

Finally, in Chapter 33 we briefly describe the Bayesian approach to statistical

inference.
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28.1 INTRODUCTION

In this chapter, we introduce the concept of likelihood and explain how likelihood

theory provides the basis for a general approach to using data to yield estimates of

parameters of interest. The idea that we use data to estimate parameters of interest

using an underlying probability model is fundamental to statistics. This ranges

from:

� simple models to estimate a single parameter of interest, based on assuming a

normal, binomial or Poisson distribution for the outcome of interest. For

example, estimating the risk of vertical transmission of HIV during pregnancy

or childbirth, in HIV-infected mothers given antiretroviral therapy during

pregnancy, is based on assuming a binomial distribution for the occurrence

(or not) of vertical transmission, or a normal approximation to this binomial

distribution;

� to multivariable regression models assuming a particular distribution for the

outcome based on the values of a number of exposure variables. Such models

relate the probability distribution of the outcome to the levels of the exposure

variables via the values of one or more parameters. For example, in Example

24.2, we used Poisson regression to compare rates of myocardial infarction

according to whether men in the Caerphilly study were current smokers or

never=ex-smokers. The regression model had two parameters: the log of the rate

in the never=ex-smokers, and the log of the rate ratio comparing current

smokers with never=ex-smokers.

In most of the chapter, we will show how likelihood theory can be used to

reproduce results that we derived earlier in the book using properties of the
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normal distribution, and approximations to the normal distribution. The strength

of the likelihood approach, however, lies in the way it can be generalized to any

statistical model, for any number of parameters. It provides the basis for fitting

logistic, Poisson and Cox regression models. For this reason it is of great import-

ance in modern medical statistics.

This chapter is conceptually fairly sophisticated, and may be skipped at a first

reading. An understanding of likelihood is not essential to the conduct of the

majority of statistical analysis. However, this chapter does provide insights into

understanding how regression models are fitted, the different ways that we can test

hypotheses about the parameters of regression models, the meaning of some of the

‘small print’ items obtained on regression outputs, such as the iteration number,

and why problems may be encountered. We recommend Clayton and Hills (1993),

for a fuller explanation of the ideas presented here, and Royall (1997) for a

discussion of different approaches to statistical inference based on likelihood.

28.2 LIKELIHOOD

Example 28.1

We will illustrate the idea of likelihood through an example, in which we are

interested in estimating the risk of household transmission of tuberculosis (TB).

We have tuberculin tested 12 household contacts of an index case of TB. Three of

the twelve tested positive; the other nine tested negative. Using the notation

introduced in Part C for binary outcomes, we have d ¼ 3 and h ¼ 9. The sample

proportion, p equals 3=12 or 0.25. As always, we are not interested in this sample

result in its own right but rather in what it tells us more generally about the risk of

household transmission (�). Putting this another way, given that the sample

proportion was 0.25, what can we deduce from this concerning the most likely

value for �? Intuitively we would answer this question with � ¼ 0:25, and we

would be correct. We will now explain the mathematical basis for this, which can

be extended to deriving estimates in more complicated situations.

The approach we use is to calculate the probability, or likelihood, of our

observed result for different values of �: the likelihood gives a comparative

measure of how compatible our data are with each particular value of �. We

then find the value of � that corresponds to the largest possible likelihood. This

value is called the maximum-likelihood estimate (MLE) of the parameter �.

MLE ¼ the value of the parameter that maximizes

the likelihood of the observed result

In this case, the likelihoods are calculated using the formula for the binomial

distribution, described in Chapter 14. Figure 28.1 shows how the value of the

likelihood varies with different values of �, and Table 28.1 shows the details of
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Fig. 28.1 Values of the likelihood for different values of p, if d ¼ 3 and h ¼ 9, showing that the maximum

likelihood estimate is 0.25.

Table 28.1 Values of the likelihood of observing

d ¼ 3, h ¼ 9 for different values of p.

Value of �

Likelihood of observed result

¼ 12!
3!9!

�3 � (1� �)9

0.1 220� 0:13 � 0:99 ¼ 0:0852

0.2 220� 0:23 � 0:89 ¼ 0:2362

0.25 220� 0:253 � 0:759 ¼ 0:2581

0.3 220� 0:33 � 0:79 ¼ 0:2397

0.4 220� 0:43 � 0:69 ¼ 0:1419

0.6 220� 0:63 � 0:49 ¼ 0:0125

the calculations for a few selected values. It can be seen that the likelihood

increases as � increases, reaches a maximum when � ¼ 0:25, and then decreases.

Thus, our maximum likelihood estimate is MLE ¼ 0:25, agreeing with our ori-

ginal guess.

This result can be confirmed mathematically. The MLE can be derived by

differentiating the binomial likelihood �d � (1� �)h to find the value of � that

maximizes it. The result is d=(d þ h) or d=n, which in this example equals 3=12 or

0.25.

In simple situations, such as the estimation of a single mean, proportion or rate,

or the comparison of two means, proportions or rates, the MLE is given by the

sample value for the parameter of interest (in other words the usual estimate). This

is the case here; the MLE for the within-household risk of TB transmission equals
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the proportion who tested tuberculin positive in the sample of 12 household

contacts of the index case.

28.3 LIKELIHOOD RATIOS AND SUPPORTED RANGES

As well as concluding that 0.25 is the most likely value for the true probability p of

the risk of household transmission of TB in our example, it is useful to know what

other values of � are compatible with the data. We now describe how to use

likelihood ratios, or more specifically their logarithmic equivalent, to give us a

range of likely values for the population parameter (in this case �), which we wish

to estimate.

In our example, the maximum likelihood equals 0.2581, and the corresponding

maximum likelihood estimate is � ¼ 0:25. The likelihood for any other value of �

will be less than this. Howmuch less likely is assessed using the likelihood ratio (LR):

Likelihood ratio (LR) ¼ Likelihood for �

Likelihood at the MLE

Figure 28.2 shows how the likelihood ratio varies across the range of possible

values and Table 28.2 shows the details of the calculation for a few selected values

Fig. 28.2 Values of the likelihood ratio for different values of �, if d ¼ 3 and h ¼ 9. The horizontal dashed

lines show the supported ranges corresponding to 90%, 95% and 99% confidence intervals (see Table 28.3),

and the dotted vertical lines show the corresponding confidence limits.
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Table 28.2 Values of the likelihood of observing d ¼ 3, h ¼ 9,

and corresponding likelihood ratio, for different values of �.

Value of � Likelihood Likelihood ratio

0.1 0.0852 0.0852=0.2581¼ 0.3302

0.2 0.2362 0.2362=0.2581¼ 0.9151

0.25 (MLE) 0.2581 0.2581=0.2581¼ 1

0.3 0.2397 0.2397=0.2581¼ 0.9287

0.4 0.1419 0.1419=0.2581¼ 0.5498

0.6 0.0125 0.0125=0.2581¼ 0.0484

of �. By definition, the likelihood ratio equals 1 for the MLE (in this case for

� ¼ 0:25) and less than one for all other values. The shape of the curve of the

likelihood ratio is exactly the same as that of the likelihood in Figure 28.1, since

we have simply divided the likelihood by a constant amount, namely the max-

imum likelihood, which in this case equals 0.2581.

The likelihood ratio provides a convenient measure of the amount of support

for a particular value(s) of �. The likelihood ratios for � equal to 0.2 or 0.3 are

close to 1, suggesting that these values are almost as compatible with the observed

data as the MLE. In contrast, the likelihood ratio for � equal to 0.6 is very small; it

is therefore much less likely that the within-household transmission rate for TB is

as high as 0.6. The conclusion is less immediately clear for likelihood ratios in

between, such as a ratio of 0.3302 for � equal to 0.1 or 0.5498 for � equal to 0.4.

By choosing a cut-off value for the likelihood ratio, we can derive a supported

range of parameter values. We classify values of � with likelihood ratios above the

cut-off as supported by the data, and those with likelihood ratios below the cut-off

as not supported by the data. This concept of a supported range of values is

intuitively simple; the choice of the cut-off value is the critical issue. Although

supported ranges arise from a different philosophical basis to confidence intervals,

the two turn out to be closely linked. We will show below that, providing the

sample size is sufficiently large, different choices of cut-off for the likelihood ratio

correspond to different choices of confidence level, as illustrated in Figure 28.2.

For example, a likelihood ratio of 0.1465 gives a supported range that approxi-

mately coincides with the 95% confidence interval for �, calculated in the usual

way (see Table 28.3).

28.4 CONFIDENCE INTERVALS BASED ON THE LOG LIKELIHOOD

RATIO AND ITS QUADRATIC APPROXIMATION

We work with the logarithm of the likelihood ratio to derive confidence intervals,

rather than the likelihood ratio itself because, provided the sample size is suffi-

ciently large, the log LR can be approximated by a quadratic equation, which is

easier to handle mathematically than the likelihood ratio. Using the rules of

logarithms (see the box on p. 156):
AQ1
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log(LR) ¼ log(likelihood for �)� log(likelihood at the MLE)

Abbreviating this formula by using the letter L to denote log likelihood gives:

log(LR) ¼ L(�)� L(MLE)

Note that, as in earlier parts of this book, we use logarithms to the base e (natural

logarithms); see Section 13.2 for an explanation of logarithms and the exponential

function.

The log(LR) corresponds to a difference in log likelihoods. Its maximum occurs

at the MLE and equals zero. Figure 28.3(a) shows the log(LR) for the data in

Example 28.1 on within-household transmission of TB. Figure 28.3(b) shows how

the shape of the curve would change for a larger sample size (120 instead of 12),

but with the same MLE of 0.25. The dashed lines in Figure 28.3 show the best

quadratic approximations to these particular log likelihoods. For the small sample

size in Figure 28.3(a) the quadratic approximation has a relatively poor fit, while

for the larger sample size in Figure 28.3(b) there is a close fit between the log

likelihood and the quadratic approximation.

The quadratic approximation is chosen to meet the log(LR) at the MLE and to

have the same curvature as the log(LR) at this point. It is symmetrical about this

point and its maximum value is zero. It can be shown that its equation can be

written in the following way:

Log(LR) ¼ � 1

2

MLE� �

S

� �2

where � represents the parameter that we wish to estimate and �1=S2 is the

curvature at the maximum. In our example � would be �, the within-household

risk of transmission of TB. In Example 6.1, � would be �, the mean sprayable

surface area of houses that we wished to estimate in order to be able to calculate

how much insecticide would be needed to spray the whole area as part of the

malaria control programme. In this case, we had a quantitative outcome which we

assumed was normally distributed.

The quadratic approximation plays a key role in parameter estimation be-

cause:

1 In simple situations, such as the estimation of a single mean, proportion or rate,

or the comparison of two means, proportions or rates:

� the MLE equals the sample value for the parameter of interest (see Section

28.2);

� the denominator S equals the usual estimate of the standard error.
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Fig. 28.3 Values of the likelihood ratio for different values of �, if (a) d ¼ 3 and h¼ 9, or (b) d¼ 30 and

h¼ 90. The dashed lines show the best quadratic approximations to the log likelihood ratio curves, fitted at

the MLE (� ¼ 0:25) and the dotted lines show the 95% confidence intervals based on the quadratic

approximations.
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2 When the underlying distribution is normal, the quadratic equation gives an

exact fit to the log(LR).

3 When the sample size is sufficiently large, then the quadratic equation gives a

close fit to the log(LR), regardless of the underlying probability distribution.

This arises from the Central Limit Theorem (see Section 5.2), which shows that

the normal distribution provides a good approximation to the sampling distri-

bution of the parameter of interest, whatever its underlying distribution, pro-

vided that the sample size is sufficiently large.

4 The closest quadratic approximation to the log(LR) can be found using a

process known as iteration, as explained in Section 28.6. This involves calculat-

ing the likelihood ratio, and its log, only at selected points of the curve. It avoids

the need to calculate the whole of the curve.

These facts together mean that the quadratic approximation provides a method to

derive MLEs and corresponding confidence intervals that avoids the need for

complicated mathematics, and that works in situations with complex underlying

distributions, as well as giving the same results as standard methods in simple

situations.

Since fitting a quadratic approximation to the log(LR) is equivalent to using a

normal approximation for the sampling distribution for the parameter � that we

wish to estimate, the 95% confidence interval based on the quadratic approxima-

tion must be:

95% CI ¼ MLE� 1:96� S to MLEþ 1:96� S

Link between confidence intervals and supported ranges

At the end of Section 28.3, we noted that a likelihood ratio of 0.1465 gives a

supported range that approximately coincides with the 95% confidence interval.

We will now derive this link.

Since the quadratic approximation for log(LR) is:

Log(LR) ¼ � 1

2

MLE� �

S

� �2

And since,

MLE� lower 95% CL ¼ MLE� (MLE � 1:96� S) ¼ 1:96S

and

MLE� upper 95% CL ¼ MLE� (MLEþ 1:96� S) ¼ �1:96S
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the values of the log(LR) curve at the 95% confidence limits (CL) are both:

Log(LR) for 95% CI ¼ � 1:962

2
¼ �1:9208

since the S’s in the numerator and denominator cancel out, and since

(� 1:96)2 ¼ 1:962. Antilogging this gives the cut-off value of the likelihood ratio

corresponding to the 95% confidence interval:

LR for 95% CI ¼ e�1:9208 ¼ 0:1465

Table 28.3 summarizes the cut-off values of the likelihood ratio and its logarithm

corresponding to 90%, 95% and 99% confidence intervals. Note that there is only

a close agreement between standard confidence intervals and supported ranges

based on these cut-offs when the quadratic approximation gives a close fit to the

log(LR).

Table 28.3 Cut-off values for the likelihood ratio, and its logarithm, corresponding to

90%, 95% and 99% confidence intervals, assuming that the underlying distribution is

normal or approximately normal.

90% CI 95% CI 99% CI

% point of normal distribution 1.6449 1.96 2.5763

Cut-off value for log(LR) �1.3529 �1.9208 �3.3187

Cut-off value for LR 0.2585 0.1465 0.0362

Information and standard error

The quantity 1=S2 (the multiplier of 1⁄2 (MLE � �)2 in the quadratic approxima-

tion) is known as the information in the data. The larger the value for the infor-

mation, the more sharply curved are the log(LR), its quadratic approximation, the

likelihood ratio and the likelihood curves. The more information that the data

contain about the parameter, the smaller is its standard error, the more precise is

our estimate, and the narrower is the confidence interval.

28.5 LIKELIHOOD IN THE COMPARISON OF TWO GROUPS

Example 28.2

So far we have described the principles of likelihood in the simplest context of a

single sample and a single parameter to be estimated. We will now illustrate its
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extension to the comparison of two exposure groups, using the data from the

Guatemala morbidity study presented in Table 23.1. This table compared the

incidence rate, l1 ¼ 33=355, of lower respiratory infections among children aged

less than 5 years living in poor housing conditions, to the rate, l0 ¼ 24=518 among

those living in good housing. The rate ratio was:

rate ratio (�) ¼ l1=l0 ¼ 33=355

24=518
¼ 2:01

As explained in Chapter 24 on Poisson regression, we can re-express this as:

rate in exposed group ¼ rate in unexposed group� exposure rate ratio

giving us the basis for a model which expresses the rate in each group in terms of

two model parameters. These are:

� the baseline rate, l0, in the unexposed group;

� the exposure rate ratio, �.

Applying the likelihood approach means that we want to find the most likely

values of these two parameters given the observed data. In other words we want to

find their maximum likelihood estimates (MLEs). It can be shown that:

1 Using the distribution of the numbers of infections in each of the two groups,

we can derive a formula for the log likelihood (L) of the observed data for

various combinations of the two parameters. This is:

L ¼ (d0 þ d1) log(l0)þ d1 log(�)� l0T0 � �l0T1 þ constant

where d1 and d0 are the number of observed infections and T1 and T0 are the

child-years of follow up in the exposed (poor housing) and unexposed (good

housing) groups respectively.

2 As we have two parameters we have a log likelihood surface rather than a curve.

This can be thought of as like the map of a hill; the two parameters correspond

to the two axes of the map, and contours on the hill correspond to values of the

log likelihood ratio. We want to find the MLEs (equivalent to finding the peak

of the hill) and the curvature at this point in order to fit a three-dimensional

quadratic approximation to the surface (of the hill).

3 In this case it is possible to show that the value of l0 that maximizes the log

likelihood is:

l0 ¼ (d0 þ d1)=(T0 þ �T1)

and that substituting this formula for l0 into the equation for log likelihood and

rearranging it gives:

L ¼ d1 log
�T1

T0

� �
� (d0 þ d1) log 1þ �T1

T0

� �
þ constant
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This is called the profile log likelihood for �. In our hill analogy, it is equivalent

to slicing through the hill at its peak and working with the resulting cross-

section.

4 Figure 28.4 shows the profile log likelihood ratio for various values of the

rate ratio using this re-expression. Note that the rate ratio is plotted on a log

scale, and that doing this makes the log likelihood ratio curve close to a

quadratic.

5 The log likelihood (and corresponding likelihood) is maximized when

l0 ¼ 24=518, the observed rate in the unexposed group;

� ¼ l1=l0 ¼ 2:01, the observed rate ratio

These MLEs are the same as the estimates obtained directly from the data in

Example 23.1.

6 Because the rate ratio is plotted on a log scale, the equation of the quadratic

approximation is:

Log(LR) ¼ � 1

2

log(MLE)� log(�)

S

� �2
, where S ¼ s:e: of the log rate ratio

Fig. 28.4 Profile log likelihood ratios for the rate ratio (plotted on a log scale), for the data on respiratory

infections in Guatemalan children. The dashed line shows the best quadratic approximation to the log

likelihood ratio at the maximum, and the dotted lines show the values of the log likelihood ratio

corresponding to the null value (1) and the maximum-likelihood estimate (2.01) of the rate ratio.
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7 The 95% confidence interval is calculated from the MLE and the standard error

of the log(rate ratio), using an error factor, as explained in Chapter 23. In this

example,

S ¼ (1=d0 þ 1=d1)
p ¼ (1=33þ 1=24)

p ¼ 0:2683, giving

EF ¼ exp(1:96� 0:2683) ¼ 1:69

Thus, 95% CI ¼ 2:01=1:69 to 2:01� 1:69 ¼ 1:19 to 3:39

With 95% confidence, the rate of acute lower respiratory infections among

children living in poor housing is between 1.19 and 3.39 times the rate among

children living in good housing.

28.6 LIKELIHOOD IN MORE COMPLICATED MODELS

In most of this chapter, we show how likelihood theory can be used to reproduce

results that we derived earlier in the book using properties of the normal distribu-

tion, and approximations to the normal distribution. The strength of the likeli-

hood approach, however, lies in the way it can be generalized to any statistical

model, for any number of parameters.

Thus the likelihood approach is used to derive maximum likelihood estimates

(MLEs) and standard errors of the parameters in a regression model. Since the

MLE for any one parameter will depend on the values of the other parameters, it

is usually not possible to write down equations for what each of the MLEs will be.

Instead, they are fitted by a computer program using a process known as iteration:

1 This starts with a guess for the MLEs of the parameters; for example, some

programs use the null values corresponding to no effects of the exposure

parameters on the outcome as the starting point.

2 Next, the value of the log likelihood is calculated using these ‘guesstimates’.

3 The value of each of the parameters is then perturbed in both directions, and the

values of the log likelihood calculated to obtain the gradient and curvature of

the log likelihood curve at this point.

4 The gradient and curvature are then used to fit the best (multi-dimensional)

quadratic approximation to the log likelihood curve at this particular point.

5 The maximum of the fitted quadratic is then located.

6 The whole process is then repeated using this maximum as the best guess for the

MLEs.

7 The iteration stops when subsequent steps yield the same values for the guess for

the MLEs. The fit is said to have converged. Some programs will record the

number of iteration steps it required to obtain this convergence.

8 Occasionally the program fails to achieve convergence. The main causes of this

are:

� insufficient data to support the estimation of the number of parameters

there are in the model;
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� profile log likelihood(s) that are very non-quadratic.

Logistic, Poisson and Cox regression all use logarithmic transformations of the

parameters in order to make the profile log likelihoods approximately quadratic in

form. The likelihood for simple and multiple regression is based on the normal

distribution, and has an exact quadratic form; the maximum likelihood estimates

obtained are equivalent to those obtained using the least squares approach (see

Chapters 10 and 11).

28.7 USING LIKELIHOOD FOR HYPOTHESIS TESTING

We will now describe how the likelihood approach can be used to provide a

general means of hypothesis testing. As explained in Chapter 8, a hypothesis

test is based on calculating a test statistic and its corresponding P-value (also

known as a significance level), in order to assess the strength of the evidence

against the null hypothesis (of no association between exposure and outcome in

the population). The smaller the P-value, the stronger is the evidence against the

null hypothesis.

There are three different types of tests based on the log likelihood:

1 The likelihood ratio test, based on the value of the log likelihood ratio at the null

value of the parameter.

2 The Wald test, which is similar but uses the value of the fitted quadratic

approximation to the log likelihood ratio at the null, rather than the actual

value of the log likelihood ratio at this point.

3 The score test, based on fitting an alternative quadratic approximation to the

log likelihood ratio, which has the same gradient and curvature at the null value

of the parameter, rather than at the MLE.

Likelihood ratio tests

The likelihood ratio test is based on the value of the log likelihood ratio at the null

value of the parameter, using the fact that it can be shown that providing the log

likelihood ratio curve is close to a quadratic:

�2� log(likelihood ratio) has a x2 distribution with 1 d:f :

We therefore work with minus twice the log(likelihood ratio); this is called the

likelihood ratio statistic (LRS):

LRS ¼ �2� log(LR) ¼ �2� (Lnull � LMLE) is x
2 with 1 d:f :

In Example 28.2, based on the data from the Guatemalan morbidity study

presented in Table 23.1, we found that the MLE for the rate ratio of the incidence
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of lower respiratory infections among children living in poor compared to good

housing conditions was 2.01. We noted that the formula for the profile log

likelihood shown in Figure 28.4 is:

L ¼ d1 log
�T1

T0

� �
� d log 1þ �T1

T0

� �
þ constant

Calculating this for � ¼ 1 (null) and � ¼ 2:01 (MLE) gives:

Lnull ¼ 33� log
1� 355

518

� �
� 57� log 1þ 1� 355

518

� �
þ constant

¼ (33��0:37786)� (57� 0:52196)þ constant ¼ �42:2211þ constant

LMLE ¼ 33� log
2:01� 355

518

� �
� 57� log 1þ 2:01� 355

518

� �
þ constant

¼ (33� 0:32028)� (57� 0:86605)þ constant ¼ �38:7956þ constant

The difference between these is the log(LR):

Lnull � Lmax ¼ �42:2211þ 38:7956 ¼ �3:4255

This is shown in Figure 28.4, in which the values of the log likelihood ratio at the

null value (� ¼ 1) and the MLE (� ¼ 2:01) are depicted by the horizontal dotted

lines.

The likelihood ratio statistic is:

LRS ¼ �2� (Lnull � Lmax) ¼ �2��3:4255 ¼ 6:8510

The corresponding P-value, derived from the x2 distribution with 1 d.f., is

P ¼ 0:0089. There is therefore good evidence against the null hypothesis, suggest-

ing that poor housing conditions did increase the rate of respiratory infections

among the Guatamalan children.

Wald tests

The Wald test is similar to the likelihood ratio test, but is based on the value of the

fitted quadratic approximation to the log likelihood ratio at the null value of

the parameter of interest, rather than the actual value of the log likelihood ratio

at this point. Recall from Section 28.4 that the quadratic approximation to the log

likelihood ratio is of the form:

Log(LR)quad ¼ � 1

2

MLE� �

S

� �2

The Wald test likelihood ratio statistic based on the quadratic approximation is

therefore:
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LRSWald ¼ �2� log(LR)quad ¼ MLE� �null
S

� �2
¼ MLE

S

� �2
, if �null ¼ 0

For the data in Example 28.2 (and 23.1), the quadratic approximation to the

log(LR) has been fitted using the log(rate ratio). Therefore:

� ¼ log(rate ratio)

MLE ¼ log(2:01) ¼ 0:6963

S ¼ 0:2683 (see Section 28:5 above)

LRSWald ¼ 0:6963

0:2683

� �2
¼ 6:7352

P ¼ 0:0094 (derived from x2 with 1 d:f :)

In this example, the Wald and likelihood ratio tests yield very similar results,

as the quadratic approximation gives a close fit to the log likelihood ratio

curve.

More commonly, the Wald test is carried out as a z-test, using the square root of

the likelihood ratio statistic. This has a particularly convenient form:

Wald statistic, z ¼ MLE

S
, if �null ¼ 0

and follows a standard normal distribution, since a x2 distribution with 1 d.f. is

equivalent to the square of a standard normal distribution. This is the basis for the

Wald tests described for logistic regression (Chapter 19), Poisson regression

(Chapter 24) and Cox regression (Chapter 27).

For the data in Example 28.2, this formulation gives:

z ¼ 0:6963

0:2683
¼ 2:5952 (equivalent to 6:7352

p
)

As before, P ¼ 0:0094.

Score tests

Much of the reasoning in this chapter has derived from fitting a quadratic

approximation to the log likelihood ratio, chosen to have the same value and

curvature at the MLE. The score test uses an alternative quadratic approximation,

chosen to have the same value, gradient and curvature as the log likelihood ratio
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at the null value of the parameter rather than at its MLE. Its form is similar to that

of the log likelihood ratio and Wald tests:

Score test ¼ �2� log(LR)quad fitted at null ¼
U2

V

where U ¼ gradient and V ¼ �curvature of the fitted log(LR) at �null

The Mantel–Haenszel statistics derived in Chapters 18 and 23 are of this form:

�2
MH ¼ U2

V

and are score tests. U, the gradient of the log likelihood at the null value of

the parameter, is also known as the score, and V (minus the curvature) is

also known as the score variance. The standard chi-squared statistic (see

Chapter 17)

�2 ¼ �
(O� E)2

E

can also be shown to be a special form of the score test.

Choice of method

All three methods described in this section for calculating a P-value are approxi-

mate. The exception is the special (and unusual) case when the parameter of

interest is the mean, �, for a normal distribution, for which we know the standard

deviation, �. In this instance, the three methods coincide, as the log likelihood

ratio is exactly quadratic, and yield an exact P-value.

The three methods will give quite different answers unless the quadratic ap-

proximations provide a good fit to the log likelihood ratio curve over the region of

the curve between the MLE and the null value. In general it is possible to get a

reasonably close fit provided the sample size is sufficiently large, and provided an

appropriate scale is used for the parameter(s) of interest. In particular, for odds,

rates, odds ratios and rate ratios, it is generally preferable to use a logarithmic

transformation, as was done in Example 28.2.

The values of the Wald and score tests are both derived from the quadratic

approximation, which is influenced by the particular scale used for the parameter.

Their values will therefore depend on what, if any, transformation is used. In

contrast, the likelihood ratio test yields the same results whatever scale is used for

the parameter of interest, since a change of scale simply changes the shape of

the log(LR) curve in the horizontal direction, but does not affect the height of the
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curve, or the relative heights between two values of the parameter. This is a

considerable advantage.

However, if the three methods yield very different results, even after using an

appropriate scale for the parameter(s), then it is usual to advise the use of exact

P-values (see Clayton & Hills, 1993, for details), although these are not without

their own difficulties.

Note that when the MLE and the null values are far apart, all three methods will

always yield very small P-values. Thus, although it may not prove possible to

obtain good quadratic approximations, and although the P-values may therefore

differ numerically, this is unlikely to substantially affect the conclusions.

28.8 LIKELIHOOD RATIO TESTS IN REGRESSION MODELS

Hypothesis testing in regression models can be carried out using either Wald tests

or likelihood ratio tests. We favour likelihood ratio tests for all but the simplest of

cases, for the following reasons:

� the lack of dependence of the likelihood ratio statistic on the scale used for the

parameter(s) of interest;

� the ease with which the calculation and interpretation of likelihood ratio

statistics can be carried out in more complex situations, as described below;

� in contrast, although Wald tests are directly interpretable for exposure vari-

ables which are represented by a single parameter in the regression model (see

Examples 19.1 and 24.1), they are less useful for a categorical variable, which is

represented by a series of indicator variables in the regression model (see

Section 29.4).

The likelihood ratio test described above for a single exposure is a special case of a

more general likelihood ratio test that applies to more complex situations involv-

ing several model parameters. An example is in regression modelling where we

have estimated the effect of a categorical exposure variable using k indicator

variables and wish to test the null hypothesis that the exposure has no association

with the outcome. In such situations we wish to test the joint null hypothesis that k

parameters equal their null values. The likelihood ratio test is based on comparing

the log likelihoods obtained from fitting the following two models:

1 Lexc, the log likelihood of the model excluding the parameter(s) to be tested;

2 Linc, the log likelihood of the model including the parameter(s) to be tested.

Then the likelihood ratio statistic (LRS) has a x2 distribution with degrees of

freedom equal to the number of parameters omitted from the model:

LRS ¼ �2� log(LR) ¼ �2� (Lexc � Linc) is x
2 with k d:f :

Thus Linc is the value of the log likelihood when all parameters equal their MLEs,

and Lexc the value of the log likelihood when the k chosen parameters equal their
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null values and the other parameters equal their MLEs for the restricted model,

excluding these parameters.

The likelihood ratio can be used to compare any two models where one is a

restricted form of the other. Its use in regression modelling will be described in

detail in Chapter 29.
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29.1 INTRODUCTION

In previous chapters we have described simple and multiple linear regression for

the analysis of numerical outcome variables, logistic regression for the analysis of

binary outcome variables, and Poisson and Cox regression for the analysis of rates

and survival data from longitudinal studies, as summarized in Table 29.1. We have

shown how all these types of regression modelling can be used to examine the

effect of a particular exposure (or treatment) on an outcome variable, including:

� Comparing the levels of an outcome variable in two exposure (or treatment)

groups.

� Comparing more than two exposure groups, through the use of indicator

variables to estimate the effect of different levels of a categorical variable,

compared to a baseline level (see Section 19.4).
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� Estimating a linear (or dose–response) effect on an outcome of a continuous or

ordered categorical exposure variable.

� Controlling for the confounding effect of a variable by including it together with

the exposure variable in a regression model. We explained that this assumed

that there was no interaction (effect modification) between the exposure and

confounding variables. That is, we assumed that the effect of each variable on

the outcome was the same regardless of the level of the other.

In this chapter, we focus on general issues in the choice of an appropriate regres-

sion model for a particular analysis. These are:

� Understanding the similarities and differences between the different types of

regression models.

� Deciding between different expressions of the outcome variable, and their

implication for the type of regression model.

� Hypothesis testing in regression models.

� Investigating interaction (effect modification) between two or more exposure

variables, and understanding its implications.

� Investigating whether an exposure has a linear (dose–response) effect on the

outcome variable.

� Understanding the problems caused when exposure and=or confounding vari-

ables are highly correlated. This is known as collinearity.

� Making the final choice of exposure=confounding variables for inclusion in the

regression model.

29.2 TYPES OF REGRESSION MODEL

The different types of regression models described in this book are summarized in

Table 29.1. It is useful to distinguish between:

� Simple and multiple linear regression models, in which the outcome variable is

numerical, and whose general form for the effects of p exposure variables is:

y ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp

These are known as general linear models. The quantity on the right hand side of

the equation is known as the linear predictor of the outcome y, given particular

values of the exposure variables x1 to xp. The �’s are the regression coefficients

associated with the p exposure variables.

� All other types of regression models, including logistic, Poisson and Cox regres-

sion, in which we model a transformation of the outcome variable rather than

the outcome itself. For example, in logistic regression we model the log of the

odds of the outcome. Apart from this transformation, the general form of the

model is similar to that for multiple regression:

log odds of outcome ¼ log
�

1� �


 �
¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp
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Table 29.1 Summary of the main regression models described in Parts B to D of this book.

Regression model

Type of outcome

variable Type Chapter

Link

function

Measure of

exposure effect Effects

Numerical Linear

(Simple=Multiple)

10=11 Identity Mean difference Additive

Binary Logistic 19 Logit Odds ratio Multiplicative

Matched binary Conditional logistic 21 Logit Odds ratio Multiplicative

Time to binary

event

Poisson 24 Log Rate ratio Multiplicative

Time to binary

event

Cox 27 Log Hazard ratio Multiplicative

These regression models are known as generalized linear models. The linear

model for the exposure variables is said to be related to the outcome via a

link function. For logistic regression, the link function is the logit (log odds)

function, and for Poisson and Cox regressions, it is the logarithmic function.

Note that multiple regression is a special case of a generalized linear model in

which the link function is the identity function f (y) ¼ y.

� Conditional regression models, such as conditional logistic regression and Cox

regression. These are special cases of generalized linear models in which estima-

tion is based on the distribution of exposures within case–control strata or

within risk sets. Likelihoods (see Chapter 28) for these models are known as

conditional likelihoods.

All regression models are fitted using the maximum likelihood approach de-

scribed in Chapter 28. The estimates obtained for the regression coefficients are

called maximum-likelihood estimates. There are two important differences worth

noting between multiple regression and the other types of generalized linear

models:

1 Multiple regression models assume that the effect of exposures combine in

an additive manner. In all the other generalized linear models discussed in

this book it is a log transformation of the outcome (odds, rate or hazard)

that is related to the linear predictor. This means that exposure effects are

multiplicative (see the detailed explanation for logistic regression in Section

20.2) and that results of these models are most easily interpreted on the ratio

scale.

2 Since multiple linear regression is based on the normal distribution, its

log likelihood has an exact quadratic form (see Section 28.4). This means that

Wald tests and likelihood ratio tests give identical results (see Sections 28.7

and 29.4). It also means that estimates obtained using maximum-likelihood

are identical to those obtained using least-squares as described in Chapters 10

and 11.

AQ1

AQ2
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29.3 DECIDING HOW TO EXPRESS THE OUTCOME VARIABLE

It is often the case that we have a choice of which regression model to use,

depending on how the outcome variable is expressed. For example, blood pressure

may be expressed as a continuous, ordered categorical or binary variable, in which

case we would use linear, ordinal logistic or logistic regression respectively.

Similarly, a study of factors influencing the duration of breastfeeding could be

analysed using Poisson or Cox regression, or using logistic regression by defining

the outcome as breastfed or not breastfed at, say, age 6 months.

In making such choices we need to balance two (sometimes opposing) consider-

ations:

1 It is desirable to choose the regression model that uses as much of the information

in the data as possible. In the blood pressure example, this would favour using

linear regression with blood pressure as a continuous variable, since categoriz-

ing or dichotomizing it would discard some of the information collected

(through using groups rather than the precise measurements). In the breastfeed-

ing example, Cox or Poisson regression would be the preferred regression

models, since the logistic regression analysis would discard important infor-

mation on the precise time at which breastfeeding stopped.

2 It is often sensible to use simpler models before proceeding to more complex ones.

For example, in examining the effect of exposures on an ordered categorical

variable we might start by collapsing the variable into two categories and using

logistic regression, before proceeding to use ordinal logistic regression to ana-

lyse the original outcome variable. We could then check whether the results of

the two models are consistent, and assess whether the gain in precision of

exposure effect estimates obtained using the original outcome variable justifies

the extra complexity.

29.4 HYPOTHESIS TESTING IN REGRESSION MODELS

Hypothesis testing is used in regression models both to test the null hypothesis

that there is no association between an exposure variable and the outcome, and in

order to refine the model, for example by:

� Examining the assumption of no interaction (effect modification) between two

or more exposure variables (see Section 29.5).

� Deciding between the different forms in which an exposure=confounder vari-

able might be included, such as deciding between modelling the effect of a

categorical exposure variable using indicator variables or including it as a linear

(dose–response) effect (see Section 29.6).

� Deciding whether a variable needs to be included in the final regression model

(see Section 29.8).

Hypothesis testing can be carried out using either Wald tests or likelihood ratio

tests, as described in Section 28.7. The P-values corresponding to the different

parameter estimates in computer outputs are based on Wald tests. These are
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directly interpretable for exposure effects that are represented by a single param-

eter in the regression model. Examples have been given in Example 19.1 for the

logistic regression of microfilarial infection with the binary exposure area

(1 ¼ rainforest=0 ¼ savannah) and in Example 24.1 for the Poisson regression of

myocardial infarction with the binary exposure ‘cursmoke’ (1¼men who were

current smokers at the start of the study=0¼men who were never or ex-smokers at

the start of the study). When an exposure effect is assumed to be linear (see

Sections 19.3 and 29.6) it is also represented by a single parameter of the regres-

sion model.

Single parameter Wald tests are, however, less useful for a categorical variable,

which is represented by a series of indicator variables in the regression model.

Thus in Example 24.2, the Poisson regression output (Table 24.6) for the effect of

social class on the rate of myocardial infarction has six parameter estimates, the

rate in the baseline group and the five rate ratios comparing the other social class

groups with the baseline. Wald z statistics and P-values are given for each of these

five social class groups, enabling each of them to be compared with the baseline.

What is needed, however, is a combined test of the null hypothesis that social class

has no influence on the rate of myocardial infarction. Some computer packages

have an option for a multi-parameter Wald test to do this.

We prefer instead to use likelihood ratio tests for all but the very simplest of

cases, both for the reasons given in Chapter 28, and for the ease with which they

can be calculated in all situations. As explained in Chapter 28, the likelihood ratio

statistic (LRS) is calculated as minus twice the difference between the log likeli-

hoods obtained from fitting the following two models:

1 Lexc, the log likelihood of the model excluding the variable(s) to be tested;

2 Linc, the log likelihood of the model including the variable(s) to be tested.

This follows a x2 distribution with degrees of freedom equal to the number of

parameters omitted from the model. For a simple binary exposure the degrees of

freedom will equal one, and for a categorical exposure the degrees of freedom will

equal the number of groups minus one.

LRS ¼ �2� (Lexc � Linc)

is x2 with d:f : ¼ number of additional parameters in the model

including the exposure variable(s) to be tested

Note that the value of the log likelihood is a standard part of the computer output

for a regression model.

Example 29.1

We will illustrate the use of the likelihood ratio test in the context of the Caerphilly

cohort study, which was introduced in Chapter 24. We will base this on the
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following three different Poisson regression models for rates of myocardial infarc-

tion fitted in that chapter:

1 Table 24.4: Cursmoke comparing smokers at recruitment with never/ex-

smokers.

2 Table 24.6: Socclass comparing six social class groups.

3 Table 24.9: Model including both Cursmoke and Socclass.

The values of the log likelihoods for these three models, together with the model

including no exposure variables (the ‘constant-only model’) are summarized in

Table 29.2. We will refer to them as Lmodel 1 to Lmodel 4. The constant-only model,

which has a single parameter corresponding to the constant term, is fitted by

specifying the type of regression and the outcome, and nothing else.

Note that the parameter estimate corresponding to the ‘constant’ term is

different for each of the four models. It represents the rate in the baseline group

(those non-exposed to all of the exposure variables included in the model) against

which all other comparisons are made. Its value therefore depends on which

exposure variables are included in the model.

Hypothesis test for a single parameter

Cursmoke is a binary exposure variable. Model 2 therefore has two parameters:

1 Constant: the rate of myocardial infarction in the baseline group (never=ex-

smokers), and

2 Cursmoke: the rate ratio comparing current smokers with never or ex-smokers.

The likelihood ratio statistic to test the null hypothesis that myocardial infarction

rates are not related to smoking status at recruitment (Cursmoke) is based on a

comparison of models 1 and 2. Note that as the value of Linc (Lmodel 2) is negative,

minus becomes a plus in the calculation.

LRS ¼ �2� (Lexc � Linc) ¼ �2� (Lmodel 1 � Lmodel 2)

¼ �2� (�1206:985þ 1195:513) ¼ 22:944

This is x2 with d:f : ¼ number of additional parameters in the inclusive model

¼ 2� 1 ¼ 1.

The corresponding P-value, derived from the x2 distribution on 1 degree of

freedom, equals 0.0000017. There is thus strong evidence of an association between

Table 29.2 Log likelihood values obtained from different Poisson regression models fitted to data

from the Caerphilly cohort study, as described in Chapter 24.

Model Exposure(s) in model No. of parameters Log likelihood

1 None (Constant only model) 1 Lmodel 1 ¼ �1206:985

2 Cursmoke (Yes=No) 2 Lmodel 2 ¼ �1195:513

3 Socclass (6 groups) 6 Lmodel 3 ¼ �1201:002

4 Cursmoke & Socclass 7 Lmodel 4 ¼ �1191:119
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current smoking and rate of myocardial infarction. The equivalent z statistic is

z ¼ 22:944 ¼ 4:790
p

. This is similar to the corresponding Wald z statistic value of

4.680, given in the output in Table 24.5.

Hypothesis test for a categorical exposure with more than one parameter

When an exposure variable has more than two categories, its effect is modelled by

introducing indicator variables corresponding to each of the non-baseline categor-

ies (as explained in Section 19.4). This is the case for Socclass, the men’s social

class at the start of the study. It has six categories, I ¼ 1 (most affluent), II ¼ 2,

III non-manual ¼ 3, III manual ¼ 4, IV ¼ 5, V ¼ 6 (most deprived). Model 3

therefore has six parameters:

1 Constant: the rate of myocardial infarction in the baseline group, chosen to be

III non-manual as more than half the men were in this group, and

2 Socclass: five rate ratios comparing each of the other social class groups with

the baseline group.

To test the null hypothesis that social class has no effect on the rate of myocardial

infarction, we compare the log likelihoods obtained in models 1 and 3. The

likelihood ratio test statistic is

LRS ¼ �2� (Lexc � Linc) ¼ �2� (Lmodel 1 � Lmodel 3)

¼ �2� (�1206:985þ 1201:002) ¼ 11:966

d:f : ¼ number of additional parameters in the inclusive model ¼ 6� 1 ¼ 5

P ¼ 0:035

Because the effect of social class was modelled with five parameters, the P-value

corresponding to this LRS is derived from the x2 distribution with 5 degrees of

freedom. It equals 0.035. There is thus some evidence of an association between

social class and rates of myocardial infarction. An alternative way to examine the

effect of social class would be to carry out a test for linear trend, as was done in

Example 24.2. Investigation of linear effects is discussed in detail in Section 29.6.

As mentioned above, it is also possible to derive a P-value from a multi-

parameter version of the Wald test. This multi-parameter version is a x2 test

with the same number of degrees of freedom as the likelihood ratio test. In this

example the Wald statistic is x2 ¼ 10:25 with d:f : ¼ 5. The corresponding P-value

is 0.069, higher than that obtained from the likelihood ratio test.

Hypothesis tests in multivariable models

Models 2 and 3 in this example are univariable models, in which we examined the

crude or unadjusted effects of a single exposure variable, namely the effects of

smoking and of social class. We now consider the multivariable model including

both smoking and social class. This is number 4 in Table 29.2. As previously
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explained in Chapter 24, the effects in this model should be interpreted as the

effect of smoking controlled for social class and the effect of social class controlled

for smoking. To test the null hypothesis that there is no effect of social class after

controlling for smoking, we compare:

1 the log likelihood of model 2, which includes only smoking, with

2 the log likelihood of model 4 which also includes social class, with the addition

corresponding to the effect of social class controlled for smoking.

The likelihood ratio test statistic is:

LRS¼ �2� (Lexc � Linc) ¼ �2� (Lmodel 2 � Lmodel 4)

¼ �2� (�1195:513þ 1191:119) ¼ 8:788

d:f :¼ number of additional parameters in the inclusive model ¼ 7� 2 ¼ 5

P ¼ 0:118

There is therefore no good evidence for an association between social class

and rates of myocardial infarction, other than that which acts through smoking.

However, we should be aware that for an ordered categorical variable

such as social class a more powerful approach may be to derive a test for trend

by including social class as a linear effect in the model, rather than as a

categorical variable. Modelling linear effects is discussed in detail in Section

29.6.

29.5 INVESTIGATING INTERACTION (EFFECT MODIFICATION) IN

REGRESSION MODELS

Interaction was introduced in Section 18.5, where we explained that there is an

interaction between the effects of two exposures if the effect of one exposure varies

according to the level of the other exposure. For example, the protective effect of

breastfeeding against infectious diseases in early infancy is more pronounced

among infants living in poor environmental conditions than among those living

in areas with adequate water supply and sanitation facilities. We also explained

that an alternative term for interaction is effect modification. In this example, we

can think of this as the quality of environmental conditions modifying the effect of

breastfeeding. Finally, we noted that the most flexible approach to examine

interaction is to use regression models, but that when we are using Mantel–

Haenszel methods to control for confounding an alternative is to use a x2 test

for effect modification, commonly called a x2 test of heterogeneity. Interaction,

effect modification and heterogeneity are three different ways of describing exactly

the same thing.

We have also seen that regression models including the effect of two or more

exposures make the assumption that there is no interaction between the exposures.

We now describe how to test this assumption by introducing interaction terms into

the regression model.
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Example 29.2

We will explain this in the context of the onchocerciasis dataset used throughout

Chapters 19 and 20, where logistic regression was used to examine the effects of

area of residence (forest or savannah) and of age group on the odds of micro-

filarial (mf ) infection. We found strong associations of both area of residence and

of age group with the odds of mf infection. We will do three things:

1 Remind ourselves of the results of the standard logistic regression model in-

cluding both area and age group, which assumes that is there is no interaction

between the two. In other words, it assumes that the effect of area is the same in

each of the four age groups, and (correspondingly) that the effect of age is the

same in the each of the two areas, and that any observed differences are due to

sampling variation. Unless you are already familiar with how such models

work, we strongly suggest that you read Section 20.2 where this is explained

in detail, before continuing with this section.

2 We will then describe how to specify a regression model incorporating an

interaction between the effects of area and age group, and how to interpret

the regression output from such a model.

3 We will then calculate a likelihood ratio statistic using the log likelihoods of

these two models to test the null hypothesis that there is no interaction between

the effects of area and age group.

Model with two exposures and no interaction

Table 29.3 summarizes the results from the logistic regression model for

mf infection including both area and age group, described in Section 20.2. Part

(a) of the table shows the set of equations for the eight subgroups of the data

that define the model in terms of its parameters. Note that the exposure effects

represent odds ratios, and that they are multiplicative, since logistic regression

models the log odds. The eight subgroups can be divided into four different

types:

1 The baseline subgroup, consisting of those in the baseline groups of both area

and age, namely those aged 5–9 years living in a savannah area. This is repre-

sented by the Baseline parameter in the model.

2 One subgroup consisting of those in the baseline group for age, but not for area,

namely those aged 5–9 years living in a rainforest area. This subgroup is

‘exposed to area but not to age’. Its relative odds of mf infection compared to

the baseline is modelled by the Area parameter.

3 Three subgroups corresponding to those in each of the three non-baseline age

groups, but who are in the baseline group for area, namely those living in

savannah areas aged 10–19 years, 20–39 years, or 40 years or more. These

subgroups are ‘exposed to age but not area’. Their relative odds of mf infection

compared to the baseline are modelled by the three age group parameters,

Agegrp(1), Agegrp(2) and Agegrp(3), respectively.
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4 Three subgroups corresponding to those in each of the three non-baseline age

groups who are also in the non-baseline group for area, namely those living in

rainforest areas aged 10–19 years, 20–39 years, or 40 years or more. These

subgroups are ‘exposed to both area and age’. If we assume that there is no

interaction between the two exposures, the relative odds of mf infection in these

three subgroups compared to the baseline are modelled by multiplying together

the Area parameter and the relevant age group parameter. This gives Area

�Agegrp(1), Area� Agegrp(2) and Area�Agegrp(3), respectively.

The model for the odds of mf infection in the eight subgroups therefore contains

just five parameters. This is made possible by the assumption of no interaction.

The parameter estimates are shown in part (b) of Table 29.3. Part (c) shows the

values obtained when these estimates are inserted into the equations in part (a) to

give estimated values of the odds of mf infection according to area and age group.

The observed odds of mf infection in each group are also shown.

Model incorporating an interaction between the two exposures

We now describe how to specify an alternative regression model incorporating an

interaction between the effects of the two exposures. We no longer assume that the

Table 29.3 Results from the logistic regression model for mf infection, including both area of residence and age

group, assuming no interaction between the effects of area and age group.

(a) Odds of mf infection by area and age group, expressed in terms of the parameters of the logistic regression

model: Odds ¼ Baseline�Area�Age group.

Odds of mf infection

Age group Savannah areas (Unexposed) Rainforest areas (Exposed)

0 (5–9 years) Baseline Baseline � Area

1 (10–19 years) Baseline � Agegrp(1) Baseline � Area � Agegrp(1)

2 (20–39 years) Baseline � Agegrp(2) Baseline � Area � Agegrp(2)

3 (� 40 years) Baseline � Agegrp(3) Baseline � Area � Agegrp(3)

(b) Parameter estimates obtained by fitting the model.

Baseline Area Agegrp(1) Agegrp(2) Agegrp(3)

Odds ratio 0.147 3.083 2.599 9.765 17.64

(c) Odds of mf infection by area and age group, as estimated from the logistic regression model, and as observed.

Savannah areas: odds of mf infection Rainforest areas: odds of mf infection

Age group Estimated Observed Estimated Observed

0 (5–9 years) 0.147 0.208 0:147� 3:083 ¼ 0:453 0.380

1 (10–19 years) 0:147� 2:599 ¼ 0:382 0.440 0:147� 3:083� 2:599 ¼ 1:178 1.116

2 (20–39 years) 0:147� 9:765 ¼ 1:435 1.447 0:147� 3:083� 9:765 ¼ 4:426 4.400

3 (� 40 years) 0:147� 17:64 ¼ 2:593 2.182 0:147� 3:083� 17:64 ¼ 7:993 10.32
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relative odds of mf infection in the subgroups ‘exposed to both age and area’ can be

modelled by multiplying the area and age effects together. Instead we introduce

extra parameters, called interaction parameters, as shown in Table 29.4(a). These

allow the effect of area to be different in the four age groups and, correspondingly,

the effects of age to be different in the two areas. An interaction parameter is

denoted by the exposure parameters for the subgroup written with a full stop

between them. The three interaction parameters in this example are denoted

Area.Agegrp(1), Area.Agegrp(2) and Area.Agegrp(3).

This new model is fitted using seven indicator variables as shown in Box 29.1.

The parameter estimates for this model are shown in Table 29.4(b). Table 29.4(c)

shows the values obtained when these are inserted into the equations in part (a).

Note that:

1 Since this model has eight parameters, the same as the number of area � age

subgroups, there is an exact agreement between the estimated odds ofmf infection

in each subgroup and the observed odds, as shown in Tables 29.3(c) and 20.3.

2 Including interaction terms leads to different estimates of the baseline, area and

age group parameters than those obtained in the model assuming no inter-

action. It is important to realize that the interpretation of the area and age

group parameters is also different.

� The Area parameter estimate (1.8275) is the odds ratio for area in the

baseline age group. In the model assuming no interaction, the Area param-

eter estimate (3.083) is a weighted average of the odds ratios for area in the

four age groups and is interpreted as the odds ratio for area after control-

ling for age group.

� Similarly, the age group parameter estimates represent the effect of age in

the baseline area group, in other words the effect among those living in

savannah areas.

3 The estimates for the interaction parameters are all greater than one. This

corresponds to a synergistic effect between area and each of the age groups,

with the combined effect more than simply the combination of the separate

effects. A value of one for an interaction term is equivalent to no interaction

effect. A value less than one would mean that the combined effect of both

exposures is less than the combination of their separate effects.

4 The interaction parameters allow the area effect to be different in the four age

groups. They can be used to calculate age-specific area odds ratios as follows:

� The Area parameter estimate equals 1.8275, and is the area odds ratio

(comparing those living in rainforest areas with those living in savannah

areas) in the baseline age group (5–9 years).

� Multiplying the Area parameter estimate by the interaction parameter

estimate Area.Agegrp(1) gives the odds ratio for area in age group 1 (10–

19 years):

OR for area in age group 1 ¼ Area�Area:Agegrp(1)

¼ 1:8275� 1:3878 ¼ 2:5362
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Table 29.4 Logistic regression model for mf infection, including both area of residence and age group, and

incorporating an interaction between their effects.

(a) Odds of mf infection by area and age group, expressed in terms of the parameters of the logistic regression

model, with the interaction parameters shown in bold: Odds ¼ Baseline� Area �Agegroup� Area:Agegroup

Odds of mf infection

Age group Savannah areas (Unexposed) Rainforest areas (Exposed)

0 (5–9 years) Baseline Baseline� Area

1 (10–19 years) Baseline� Agegrp(1) Baseline� Area� Agegrp(1)� Area:Agegrp(1)

2 (20–39 years) Baseline� Agegrp(2) Baseline� Area� Agegrp(2)� Area:Agegrp(2)

3 (�40 years) Baseline� Agegrp(3) Baseline� Area� Agegrp(3)� Area:Agegrp(3)

(b) Computer output showing the results from fitting the model (interaction parameters shown in bold).

Odds ratio z P > jzj 95% CI

Area.Agegrp(1) 1.3878 0.708 0.479 0.560 to 3.439

Area.Agegrp(2) 1.6638 1.227 0.220 0.738 to 3.751

Area.Agegrp(3) 2.5881 2.171 0.030 1.097 to 6.107

Area 1.8275 1.730 0.084 0.923 to 3.619

Agegrp(1) 2.1175 1.998 0.046 1.015 to 4.420

Agegrp(2) 6.9639 6.284 0.000 3.802 to 12.76

Agegrp(3) 10.500 7.362 0.000 5.614 to 19.64

Constant (Baseline) 0.2078 �5:72 0.000 0.121 to 0.356

(c) Odds of mf infection by area and age group, as estimated from the logistic regression model, with the

interaction parameters shown in bold.

Odds of mf infection

Age group Savannah areas Rainforest areas

0 (5–9 years) 0.2078 0:2078� 1:8275 ¼ 0:380

1 (10–19 years) 0:2078� 2:1175 ¼ 0:440 0:2078� 1:8275� 2:1175� 1:3878 ¼ 1:116

2 (20–39 years) 0:2078� 6:9639 ¼ 1:447 0:2078� 1:8275� 6:9639� 1:6638 ¼ 4:400

3 (�40 years) 0:2078� 10:500 ¼ 2:182 0:2078� 1:8275� 10:500� 2:5881 ¼ 10:32

Similarly,

OR for area in age group 2 ¼ Area�Area:Agegrp(2)

¼ 1:8275� 1:6638 ¼ 3:0406

and

OR for area in age group 3 ¼ Area�Area:Agegrp(3)

¼ 1:8275� 2:5881 ¼ 4:7300

These four age-group-specific area odds ratios are the same as those shown in

Tables 20.3 and 20.4.
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5 In exactly the same way, the interaction parameters can be used to calculate

area-specific age group odds ratios. For example:

OR for age group 1 in rainforest areas ¼ Agegrp(1)�Area:Agegrp(1)

¼ 2:1175� 1:3878 ¼ 2:9386

6 An alternative expression of these same relationships is to note that the inter-

action parameter Area.Agegrp(1) is equal to the ratio of the odds ratios for area

in age group 1 and age group 0, presented in Tables 20.3 and 20.4. For example:

Area:Agegrp(1) ¼ OR for area in age group 1

OR for area in age group 0
¼ 2:5362

1:8275
¼ 1:3878

If there is no interaction then the area odds ratios are the same in each age

group and the interaction parameter equals 1.

7 Alternatively, we can express the interaction parameter Area.Agegrp(1) as the

ratio of the odds ratios for age group 1 (compared to age group 0), in area 1 and

area 0:

Area:Agegrp(1) ¼ OR for age group 1 in area 1

OR for age group 1 in area 0
¼ 2:9386

2:1175
¼ 1:3878

(The odds ratios for age group 1 were calculated using the raw data presented in

Table 20.3).

8 The other interaction parameter estimates all have similar interpretations: for

example the estimate for Area.Agegrp(2) equals the ratio of the area odds ratios

in age group 2 and age group 0, and equivalently it equals the ratio of the odds

ratios for age group 2 (compared to age group 0) in area 1 and area 0.

9 For a model allowing for interaction between two binary exposure variables, the

P-value corresponding to the interaction parameter estimate corresponds to a

Wald test of the null hypothesis that there is no interaction. When, as in this

example, there is more than one interaction parameter, the individual P-values

corresponding to the interaction parameters are not useful in assessing the

evidence for interaction: we describe how to derive the appropriate likelihood

ratio test later in this section.

Table 29.5 summarizes the interpretation of the interaction parameters for differ-

ent types of regression models.

Table 29.5 Interpretation of interaction parameters.

Type of regression model Interpretation of interaction parameters

Linear Difference between mean differences

Logistic Ratio of odds ratios

Poisson Ratio of rate ratios
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Likelihood ratio test for interaction

To test the null hypothesis that there is no interaction between area and age group,

we need to compare the log likelihoods obtained in the two models excluding and

including the interaction parameters. These are shown in Table 29.6. The likeli-

hood ratio test statistic is:

LRS¼ �2� (Lexc � Linc) ¼ �2� (�692:407þ 689:773) ¼ 5:268

d:f :¼ number of additional parameters in the inclusive model ¼ 8� 5 ¼ 3

P¼ 0:153

Therefore this analysis provides little evidence of interaction between the effects of

area and age on the odds of microfilarial infection

Table 29.6 Log likelihood values obtained from the logistic regression models for mf infection

by area of residence and age group, (a) assuming no interaction, and (b) incorporating an

interaction between the effects of area and age group.

Model Exposure(s) in model No. of parameters Log likelihood

(a) exc Area and Agegrp 5 �692.407

(b) inc Area, Agegrp and Area.Agegrp 8 �689.773

Interactions with continuous variables

It is straightforward to incorporate an interaction between the effects of a continu-

ous exposure variable (x) and a binary exposure variable (b, coded as 0 for

BOX 29.1 USING INDICATOR VARIABLES TO INVESTIGATE INTERACTION IN

REGRESSION MODELS

Values of the seven indicator variables used in a model to examine the

interaction between area (binary variable) and age group (4 groups):

Age group Area Area Age(1) Age(2) Age(3) Area.Age(1) Area.Age(2) Area.Age(3)

5–9 years (0) Savannah 0 0 0 0 0 0 0

Forest 1 0 0 0 0 0 0

10–19 (1) Savannah 0 1 0 0 0 0 0

Forest 1 1 0 0 1 0 0

20–39 years (2) Savannah 0 0 1 0 0 0 0

Forest 1 0 1 0 0 1 0

�40 years (3) Savannah 0 0 0 1 0 0 0

Forest 1 0 0 1 0 0 1
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unexposed and 1 for exposed individuals) in a regression model, by multiplying

the values of the two exposures together to create a new variable (x.b) representing

the interaction, as shown in Table 29.7. This new variable equals 0 for

those unexposed to exposure b, and the value of exposure x for those exposed to

b. The regression coefficient for x.b then corresponds to the difference between

the slope in individuals exposed to b and the slope in individuals not exposed to b,

and the evidence for an interaction may be assessed either using the Wald

P-value for x.b, or by omitting x.b from the model and performing a likelihood

ratio test.

To examine interactions between two continuous exposure variables w and x, it

is usual to create a new variable w.x by multiplying w by x. If the regression

coefficient for w.x is 0 (1 for models with exposure effects reported as ratios) then

there is no evidence of interaction.

Table 29.7 Creating a variable to represent an interaction between a continuous

and a binary exposure variable.

Continuous exposure (x) Binary exposure (b) Interaction variable (x.b)

x 0 (unexposed) 0

x 1 (exposed) x

Confounding and interaction

Note that confounding and interaction may coexist. If there is clear evidence of

an interaction between the exposure and the confounder, it is no longer adequate

to report the effect of the exposure controlled for the confounder, since

this assumes the effect of the exposure to be the same at each level of the

confounder. This is not the case when interaction is present. Instead, we

should report separate exposure effects for each stratum of the confounder. We

can derive these by performing a separate regression to examine the association

between the exposure and outcome variables, for each level of the confounding

variable.

It is possible to derive stratum-specific effects in regression models by including

appropriate indicator variables, or combining regression coefficients as was done

in Table 29.4(c). This has the advantage of allowing estimation of such effects,

controlled for the effects of other exposure variables. Confidence intervals for

such combinations of regression coefficients need to take into account the covar-

iance (a measure of the association) between the individual regression coefficients:

some statistical packages provide commands to combine regression coefficients

and derive corresponding confidence intervals.

An advantage of Mantel–Haenszel methods is that because the stratum-specific

exposure effects tend to be presented in computer output, we are encouraged to

look for evidence of interaction. In regression models we have to fit interaction

terms explicitly to do this.
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Regression models with more than two variables

The power of regression models is that, providing we make the simplifying assump-

tion of no interactions, they allow us to examine the joint (simultaneous) effects of a

number of exposure variables. For example, suppose we had four exposure vari-

ables, with 2, 3, 4 and 5 levels respectively. The number of subgroups defined by

different combinations of these exposure groups would be 2� 3� 4� 5 ¼ 120.

Mantel–Haenszel methods to adjust for confounding would need to stratify by all

these 120 subgroups. Similarly, a regression model that included all the interactions

between these four exposures would also have 120 parameters. However, a regres-

sionmodel that assumes no interaction between any of the exposures would contain

only 11 parameters, one for the baseline (constant) term plus 1, 2, 3 and 4 param-

eters for each of the four exposure variables, since (k� 1) parameters are needed for

an exposure with k levels. Interactions between confounding variables are often

omitted from regression models: this is discussed in more detail in Chapter 38.

Increasing power in tests for interaction

The interpretation of tests for interaction is difficult. As discussed in more detail in

Sections 35.4 and 38.6, tests for interaction usually have low power, so that the

absence of strong evidence that interaction is present does not imply that inter-

action is absent.

A further problem, in addition to that of low power, occurs in regression models

with binary or time-to-event outcomes, when some subgroups contain no individ-

uals who experienced the outcome event. If this is the case, then interaction

parameters for that subgroup cannot be estimated, and statistical computer

packages may then drop all individuals in such subgroups from the analysis.

This means that the model including the interactions is not directly comparable

with the one assuming no interaction.

A solution to both of these problems is to combine exposure groups, so that the

interaction introduces only a small number of extra parameters. For example, to

investigate possible interactions between area and age we might first combine age

groups to create a binary age group variable, separating those aged 0 to 19 years

from those aged 20 years or more. Note that it is perfectly permissible to examine

interactions using indicator variables based on binary variables, while controlling

for the exposure effects based on the original (ungrouped) variables.

Further advice on examining interactions is provided in Box 18.1 on page 188

and in Chapter 38.

29.6 INVESTIGATING LINEAR EFFECTS (DOSE–RESPONSE

RELATIONSHIPS) IN REGRESSION MODELS

Exposure effects may be modelled as linear if the exposure is either a numerical or

an ordered categorical variable. In modelling exposure effects as linear, we assume

AQ3
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that the outcome increases or decreases systematically with the exposure effect, as

depicted in Figure 29.1, panels (a) and (b). If the observed association is as

depicted in panel (c) of Figure 29.1, then it is appropriate to conclude that there

is no linear effect. However, it is essential to be aware of the possibility that there is

extra-linear variation in the exposure–outcome relationship. An example is

depicted in panel (d) of Figure 29.1. Here, a regression model assuming a linear

effect would conclude that there was no association between the exposure and the

outcome. This would be incorrect, because there is in fact a non-linear association:

the outcome level first increases and then decreases with increasing exposure.

The interpretation of linear effects, and the methods available to examine them,

depends on the type of outcome and regression model:

� in linear ormultiple regressionmodels, the linear effect corresponds to a constant

increase in the mean of the outcome per unit increase in the exposure variable;

� in logistic regression or conditional logistic regressionmodels, it corresponds to a

constant increase in the log odds per unit increase in the exposure variable;

� in Poisson regression models, it corresponds to a constant increase in the log

rate per unit increase in the exposure variable; and

� in Cox regression models, it corresponds to a constant increase in the log hazard

per unit increase in the exposure variable.

Fig. 29.1 Four possibilities for the association between outcome and exposure. Panels (a) and (b) show,

respectively, positive and negative linear associations between the outcome and exposure. In panel (c) there

is no association between the outcome and exposure; the estimated linear effect is zero. In panel (d) the

linear effect is also zero, but there is a non-linear association between the outcome and the exposure.
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When exposure effects are expressed as ratio measures, the linear effect corres-

ponds to the amount by which the outcome is multiplied per unit increase in the

exposure variable. For example, Table 19.11 shows that for the onchocerciasis

data the log odds ratio for the linear association between microfilarial infection

and age group was 0.930, corresponding to an odds ratio of 2.534 per unit increase

in age group. The odds ratio comparing age group 2 with age group 0 is therefore

2:5342 ¼ 6:421, and in general the odds ratio for an increase of k age groups is

2:534k.

We saw in Chapter 10 on linear regression that the first step in examining the

association between a numerical outcome and a numerical exposure is to draw a

scatter plot. Such plots should protect us from making errors such as that depicted

in panel (d) of Figure 29.1, where an assumption of a linear effect would lead to the

incorrect conclusion that there is no association between the exposure and outcome.

For logistic and Poisson regression, such plots cannot be drawn without first

grouping the exposure variable and then graphing the outcome (e.g. log odds, log

rate) in each group. For example, the odds of a binary outcome for an individual

are either 0=1 ¼ 0, or 1=0 ¼ infinity. We cannot therefore graph the log odds for

individuals, but we can calculate the log odds in groups (e.g. age groups) provided

that there is at least one individual with and one without the disease outcome in

each group. Therefore it is sensible to group numerical exposure variables into

ordered categories in early analyses, in order to check for linearity in the measure

of effect. If the exposure–outcome association appears approximately linear then

the original continuous variable may be used in subsequent models. For example,

Figure 19.2 shows that there is an approximately linear association between the

log odds of microfilarial infection and age group in the onchocerciasis data.

In conditional logistic regression and Cox regression, in which exposure effects

are calculated by comparing exposures within case–control strata or risk sets, it is

not possible to draw such graphs of outcome against exposure, and it is essential

to examine linearity assumptions within regression models.

Testing for a linear effect

We test the null hypothesis that there is no linear effect in the usual way using a

likelihood ratio test, by comparing Linc, the log likelihood from the model includ-

ing the linear effect (and other exposure effects of interest), with Lexc, the log

likelihood from the model excluding the linear effect. Standard regression output

for the linear exposure effect reports the P-value corresponding to the Wald test of

this null hypothesis.

Testing for departure from linearity

We test the null hypothesis that the exposure effect is linear by comparing the model

assuming a linear effect with a more general model in which the exposure effect is

not assumed to be linear. We will describe two ways of doing this:
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1 for ordered categorical exposure variables, this comparison may be with a

model including the exposure as a categorical variable, where indicator vari-

ables are used to estimate the difference in outcome, comparing each non-

baseline category with the baseline;

2 for any ordered categorical or numerical exposure variable, we may examine the

linearity assumption by introducing quadratic terms into the model.

Testing linearity for ordered categorical variables

The null hypothesis is that the exposure effect is linear. To test this, we derive a

likelihood ratio statistic by comparing:

(a) Lexc, the log likelihood when the exposure effect is assumed to be linear (the

null hypothesis);

(b) Linc, the log likelihood of the model when we allow the exposure effect to be

non-linear, and which therefore includes additional parameters.

Example 29.2 (continued)

We will illustrate this approach by examining the linear effect of age group in the

onchocerciasis data. The two models are:

(a) A logistic regression model of the odds of mf infection with age group as a

linear effect. This includes just two parameters, the baseline (constant) plus a

linear effect for age group. Their estimates were given in Table 19.13.

(b) A logistic regression model of the odds of mf infection with age group as a

categorical variable. This model makes no assumption about the shape of the

relationship between age group and mf infection. It includes four parameters,

the baseline and three indicator variables for comparing each of the other

three age groups with the baseline group. The parameter estimates were given

in Table 19.11.

Note that model (a) is a special case of the more general model (b). The log

likelihood values obtained in these two models are shown in Table 29.8. The

likelihood ratio test statistic is:

LRS ¼ �2� (Lexc � Linc) ¼ �2� (�729:240þ 727:831) ¼ 2:818

d:f : ¼ number of additional parameters in the inclusive model ¼ 4� 2 ¼ 2

P ¼ 0:24

Table 29.8 Log likelihood values obtained from the logistic regression models for mf

infection by area of residence and age group, (a) assuming a linear effect of age group, and

(b) allowing for a non-linear effect of age group, by including indicator variables.

Model Exposure(s) in model No. of parameters Log likelihood

(a) exc Age group (linear, see Table 19.13) 2 �729.240

(b) inc Agegrp (categorical, see Table 19.11) 4 �727.831
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There is no evidence against the null hypothesis that the effect of age group is

linear. The likelihood ratio statistic has two degrees of freedom, corresponding to

the extra number of parameters needed to include age group as a categorical

variable compared to including it as a linear effect.

If the likelihood ratio test does provide evidence of non-linearity, then the

exposure effect should be modelled using separate indicator variables for each

non-baseline exposure level, as in model (b).

Testing linearity using quadratic exposure effects

We will illustrate the second approach to testing linearity in the context of the

Caerphilly study by examining the effect of fibrinogen (a numerical exposure) on

the rate of myocardial infarction (MI).

Example 29.3

Fibrinogen, a factor involved in blood coagulation that has been shown to be

associated with rates of cardiovascular disease in a number of studies, was meas-

ured at the baseline examination in the Caerphilly study. Its distribution is shown

by the histogram in Figure 29.2(a). An initial examination of the association

between fibrinogen and rates of myocardial infarction was done by:

� dividing the distribution into deciles (the lowest 10% of fibrinogen measure-

ments, the second 10% and so on; see Section 3.3);

� calculating the median fibrinogen level in each of these deciles. These were 2.63,

3, 3.22, 3.4, 3.6, 3.8, 4, 4.25, 4.59 and 5.23;

� graphing the rate of myocardial infarction (per 1000 person-years, log scale) in

each decile against median fibrinogen in each decile.

The results are shown in Figure 29.2(b). There appears to be an approximately

linear association between fibrinogen and the log rate of MI.

A Poisson regression model was then fitted for the linear effect of fibrinogen

(using the original, ungrouped measurement) on rates of MI. The results are
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Fig. 29.2 (a) Histogram showing the distribution of fibrinogen (100g/dL) at the baseline examination of the

Caerphilly study, and (b) MI rates (per 1000 person-years, log scale, with 95% confidence intervals for the

rate in each group) for the median fibrinogen in each decile.
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Table 29.9 Output from a Poisson regression model for the linear effect of fibrinogen on log rates of

myocardial infarction in the Caerphilly study.

(a) Output on log scale

Coefficient s.e. z P > jzj 95% CI

Fibrinogen 0.467 0.054 8.645 0.000 0.361 to 0.573

Constant �6.140 0.228 �26.973 0.000 �6.587 to �5.694

(b) Output on rate ratio scale

Rate ratio z P > jzj 95% CI

Fibrinogen 1.595 8.645 0.000 1.435 to 1.773

shown in Table 29.9. The regression coefficient for fibrinogen is 0.467,

corresponding to a rate ratio per unit increase of 1.595. This implies that the

rate ratio for a three-unit increase in fibrinogen (from 2.5 to 5.5) is 1:5953 ¼ 4:057.

This is consistent with the increase seen over this range in Figure 29.2(b).

Although there is clear evidence of a linear (dose–response) association between

fibrinogen and log rates of myocardial infarction, we may still wish to derive a

formal test for extra-linear variation. Mathematically, the simplest departure from

a linear relationship between the outcome and an exposure (x) is a quadratic

relationship. The algebraic form of such a relationship is:

outcome ¼ �0 þ �1xþ �2x
2

To examine the evidence for a quadratic exposure effect, we create a new variable

whose values are the squares of the exposure being examined. We then fit a

regression model including both the exposure and the new variable (exposure

squared).

Table 29.10 shows the Poisson regression output for the model including

the linear effect of fibrinogen, and fibrinogen2. There is only weak evidence

(Wald P-value¼ 0.091) for a quadratic effect, so it would be reasonable

to conclude that the effect of fibrinogen on log rates of MI is approximately

linear. The fact that the regression coefficient for fibrinogen2 is less than 0

(rate ratio< 1) implies that the effect of fibrinogen decreases as fibrinogen in-

creases.

Because the linear and quadratic effects are sometimes collinear (see Section

29.7), it is preferable to examine the evidence for non-linearity using a likelihood

ratio test comparing the models including and excluding the quadratic effect.

When quadratic exposure effects are included in a model, we should not attempt

to interpret the linear effect alone. In particular, the Wald P-value of 0.002 for the

linear effect in Table 29.10 should not be interpreted as testing the null hypothesis

that there is no linear effect of fibrinogen.
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Table 29.10 Output from a Poisson regression model for the quadratic effect of fibrinogen on log

rates of myocardial infarction in the Caerphilly study.

(a) Output on log scale

Coefficient s.e. z P > jzj 95% CI

Fibrinogen 1.038 0.338 3.073 0.002 0.376 to 1.700

Fibrinogen2 �0.062 0.037 �1.688 0.091 �0.134 to 0.010

Constant �7.383 0.757 �9.750 0.000 �8.868 to �5.899

(b) Output on rate ratio scale

Rate ratio z P > jzj 95% CI

Fibrinogen 2.824 3.073 0.002 1.457 to 5.475

Fibrinogen2 0.940 �1.688 0.091 0.874 to 1.010

Dose–response and unexposed groups

When examining dose–response relationships we should distinguish between the

exposed group with the minimum exposure, and the unexposed group. For

example, it may be that smokers in general have a higher risk of some disease

than non-smokers. In addition, there may be an increasing risk of disease with

increasing tobacco consumption. However, including the non-smokers with the

smokers may bias our estimate of the dose–response relationship (linear effect)

among smokers. This is illustrated in Figure 29.3. There are two possible ways to

restrict estimation of the linear effect to exposed individuals:

1 Exclude the unexposed group, then estimate the linear effect among the ex-

posed.

2 Include an indicator variable for exposed=unexposed together with linear effect

of the exposure variable. The regression coefficient for the exposure will then

estimate the linear effect among the exposed, while the regression coefficient for

the indicator variable will estimate the difference between the outcome in the

unexposed group and that projected by the linear effect in the exposed (dotted

line in Figure 29.3).

Remarks on linear effects

1 It makes sense to model an exposure effect as linear if it is plausible that the

outcome will increase (or decrease) systematically with the level of exposure.

Such an exposure effect is known as a dose–response relationship, or trend.

2 A test for trend (see Section 17.5) is an approximation (based on a score test) to

a likelihood ratio test of the null hypothesis that the regression coefficient for a

linear effect is zero.

3 The existence of a dose–response relationship may provide more convincing

evidence of a causal effect of exposure than a simple comparison of exposed

with unexposed subjects.

336 Chapter 29: Regression modelling



Fig. 29.3 Possible association between cigarette consumption and the log odds of a disease outcome.

There is a larger difference between exposed (smokers) and unexposed (non-smokers) than would be

expected given the magnitude of the dose–response relationship among the smokers.

4 Estimating a linear effect will often be the most powerful way to detect an

association with an ordered exposure variable. This is because we only estimate

one parameter, rather than a parameter for each non-baseline level. However, it

is essential that this simplifying assumption, that an exposure effect may be

modelled as a linear effect, be checked.

5 Modelling an exposure effect as linear will only be valid if the exposure is

ordered categorical or numerical. Ideally, the category values should reflect

the degree of exposure. For example, if the exposure was level of blood pressure

and the four categories of exposure were obtained by grouping the blood

pressures, then the category values could be the midpoints or mean of blood

pressure in each of the four groups. In the absence of any genuine measurement

(for instance when we model the effects of social class) it is usual to assign scores

0,1,2,3,4 . . . to the various exposure levels.

29.7 COLLINEARITY

When two exposure variables are highly correlated we say that they are collinear.

Collinearity can cause problems in fitting and interpreting regression

models, because inclusion of two highly correlated exposure variables in a regres-

sion model can give the impression that neither is associated with the

outcome, even when each exposure is strongly associated (individually) with

the outcome.
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We will illustrate this by examining the regression of height (the outcome

variable) and age (the exposure variable) from the study of 636 children living in

Lima, Peru (see Chapter 11), in the presence of an artificially constructed variable

newage.Newage has been computer-generated to be collinear with age, by adding a

random ‘error’ to each age, with the standard deviation of this random error made

equal to 1 year. This has led to a correlation of 0.57 between age and newage,

which is high but not very high.

The correlation between height and age was 0.59, and the regression coefficient

was 5.15 cm=year (s.e.¼ 0.28). A regression of height on newage alone gives a

regression coefficient of 1.61. This is much smaller than the regression coefficient

for age (5.15) because the addition of a random error component tends to reduce

the regression coefficient (see Chapter 36 for a more detailed discussion of this

issue).

When both age and newage are included in the model, the regression coefficient

for age is slightly increased (5.31) compared to the value for the model with age

alone (5.15), while the regression coefficient for newage is slightly less than zero.

These results are shown in the first row of Table 29.11. Thus, the joint regression

has correctly identified strong evidence of an association between height and age,

taking newage into account, and no evidence of an association between height and

newage, taking age into account. In this artificially created example, the regression

has correctly identified the joint information of age and newage being contained in

age, since in essence newage is a less accurate measure of age. This level of

collinearity in this particular example has not caused a problem.

We will now demonstrate how problems can occur with increasing collinearity

between age and newage by decreasing the standard deviation of the random error

that is added to variable age to create variable newage. The second row of Table

29.11 shows that when this standard deviation is decreased to 0.1 the correlation

between age and newage is very high (0.9904). The coefficient from the regression

of height on newage alone is 5.06: close to the regression coefficient for age alone.

When both age and newage are included in the model, there is a substantial

increase in the regression coefficient for age, while the regression coefficient for

Table 29.11 Demonstration of the effect of collinearity, using data from the study of lung disease in children in

Lima, Peru. Variable newage is variable age plus a random error whose standard deviation is given in the first

column in the table.

s.d. of

random

error

Correlation

between age

and newage

Regression of height

on newage

Regression of height

on age and newage

Coefficient (s.e.)

for newage

Coefficient (s.e.)

for age

Coefficient (s.e.)

for newage

Sum of

coefficients

1 0.57 1.61 (0.20) 5.31 (0.33) � 0.17 (0.20) 5.16

0.1 0.9904 5.06 (0.28) 6.81 (2.00) � 1.66 (1.99) 5.15

0.01 0.9999 5.16 (0.28) 21.76 (19.94) �16.62 (19.94) 5.14
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newage is clearly negative. The important thing to notice is that there is an even

more dramatic increase in the standard errors of both regression coefficients.

When the standard deviation of the random error is reduced to 0.01, the

correlation between age and newage is extremely high (0.9999, third row of

Table 29.11). The regression coefficient for newage alone is almost identical to

that for age, as would be expected because the error now contained in newage as a

measure of age is very small. Inclusion of both variables in the model has a

dramatic effect: the regression coefficient for age is greatly increased to 21.76,

while the regression coefficient for newage is reduced to �16.62. The standard

error of each regression coefficient is large (19.94). This joint model could lead to

the erroneous conclusion that neither age nor newage is associated with the

outcome variable, height.

The final column of the table shows that although the regression coefficients for

age and newage change dramatically as the collinearity between them increases,

the sum of the two coefficients remains approximately constant, and is the same as

the regression coefficient for age alone. This suggests a solution to the problem. It

is not possible simultaneously to estimate the effects of both age and newage,

because each has the same association with height. However we can estimate the

association of the outcome with the sum (or, equivalently, the average) of the two

variables. Alternatively, we can simply choose one of the variables for inclusion in

our model and exclude the other one.

In conclusion, this example demonstrates that including two strongly collinear

exposure variables in a regression model has the potential to lead to the erroneous

conclusion that neither is associated with the outcome variable. This occurs when

collinearity is high enough to lead to dramatic increases in the standard errors of

the regression coefficients. Comparing the standard errors from the single expos-

ure models with the joint exposure model can identify whether this problem is

occurring. When it does occur, it is not possible to estimate the effect of each

exposure controlling for the other in a regression model.

29.8 DECIDING WHICH EXPOSURE VARIABLES TO INCLUDE IN A

REGRESSION MODEL

A key challenge in analysing studies that have data on a large number of exposure

variables is how to decide which of these variables to include and which to exclude

from a particular regression model, since it is usually unwise or impossible to

include all of them in the same model. A rough guide is that there should be at

least ten times as many observations (individuals) as exposure variables in a

regression model: for example, a model which includes ten variables should be

based on data from at least 100 individuals. Note that each separate indicator

variable counts as a separate variable.

Two important considerations will influence how the choice of exposure vari-

ables is made:

1 Are you using multiple linear regression, or a different generalized linear model?
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2 Is the main aim of the model to estimate the effect of a particular exposure as

accurately as possible, to predict the outcome based on the values of a number

of exposures, or to develop an explanatory model of those exposures that have

an influence on the outcome?

Implication of type of regression model

For multiple linear regression, you should aim to include all exposure variables

that are clearly associated with the outcome when estimating the effect of a

particular exposure, whether or not they are confounders (with the exception that

variables on the causal pathway between the exposure of interest and the outcome

should not be included; see Section 18.2). Doing this will reduce the residual sum

of squares (see Chapter 10) and so will increase the precision of the estimated

effect of the main exposure, and the power of the associated hypothesis test.

However, this is not the case with other generalized linear models. For example,

inclusion of additional variables in logistic regression models will tend to increase

the standard error of the exposure effect estimate.

Estimating the effect of a particular exposure

When estimating the effect of a particular exposure, we have seen that it is

important to include potential confounding variables in the regression model,

and that failure to do so will lead to a biased estimate of the effect. In considering

which potential confounders should be included, it is essential that careful consid-

eration be given to hierarchical relationships between exposures and confounders,

as well as to statistical associations in the data. This is explained in detail in

Chapter 38 on strategies for data analysis.

Deriving a regression model to predict the outcome

Different considerations apply when the main purpose of the analysis is to derive a

regression model that can be used to predict future values of the outcome variable.

For example, this approach has been used in developing countries to attempt to

identify whether a pregnant woman may be at risk of obstetric difficulties, based

on factors such as social class, previous pregnancy outcomes, and pre-pregnancy

weight and height.

The aim in developing a predictive model is to identify a set of exposure

variables that give a good prediction of the outcome. The emphasis is no longer

on assessing the importance of a particular exposure or on understanding the

aetiology of the outcome. However, a good starting point is to include those

exposure variables that are known from other studies to be strongly associated

with the outcome. In addition, it may be helpful to use an automated procedure to

identify which (of what are often a large number of additional variables) might be

included in the model. Such procedures are usually based on the magnitude of the
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P-value for each variable and are known as stepwise selection procedures. For

example, a typical stepwise procedure might be:

1 Fit a model including all exposure variables. Now omit each variable in turn,

and record the P-value for each likelihood ratio test. The variable with the

highest P-value is omitted from the next step of the procedure.

2 Fit the model including all variables except that omitted in step (1). Now

proceed as in step (1) to select the next variable to be omitted.

3 Continue until the P-value for omission of each remaining variable is less than a

chosen threshold (e.g. 0.2).

4 Now consider adding, in turn, each of the variables omitted in steps (1) to (3).

Add the variable with the smallest P-value, providing this is less than 0.2.

5 Continue until no more variables with a P-value of < 0:2 can be added. The

resulting model is the final model to be used for prediction.

Of course, different versions of such stepwise procedures can be chosen. Such

procedures may appear attractive, because they seem to provide an objective way

of choosing the best possible model. However they have serious disadvantages,

which are summarized in Box 29.2. If it is necessary to use a stepwise selection

procedure, then it is advisable to use a higher P-value threshold, such as 0.2 rather

than 0.05 (the traditional threshold for statistical significance).

BOX 29.2 PROBLEMS WITH STEPWISE VARIABLE SELECTION IN REGRESSION

MODELS

1 The major problem with stepwise regression is that the derived model will

give an over-optimistic impression. The P-values for the selected variables

will be too small, confidence intervals will be too narrow and, in the case

of multiple regression, the proportion of variance explained (R2) will be

too high. This is because they do not reflect the fact that the model was

selected using a stepwise procedure. The higher the original number of

exposure variables from which the final model was selected, the higher the

chance of selecting variables with chance associations with the outcome

and thus the worse this problem will be.

2 The regression coefficients will be too large (too far away from their null

values). This means that the performance of the model in predicting future

values of the outcome will be less good than we might expect.

3 Computer simulations have shown minor changes in the data may lead to

important changes in the variables selected for the final model.

4 Stepwise procedures should never be used as a substitute for thinking

about the problem. For example, are there variables that should be

included because they are known from previous work to be associated

with the outcome? Are there variables for which an association with the

outcome is implausible?
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The quality of predictions from models that have been derived using stepwise

procedures should be evaluated using a separate dataset (the test dataset) to that

which was used to derive the model (the development dataset). This is for two

reasons:

� as explained in Box 29.2, the regression coefficients in the model will tend to be

too large;

� the individuals for whom we wish to predict the outcome may differ, in a

manner not captured by the variables measured, from those in the development

dataset.

Developing an explanatory model for the outcome

Sometimes the focus of a study is to understand the aetiology of the outcome, and

to identify those exposures or risk factors that are important influences on it. The

purpose of the regression model here is halfway between that of the other two

situations just described. Thus the focus is neither on identifying which confoun-

ders to include for a particular risk factor, nor is it on identifying any combination

of exposures that works, as in the prediction scenario. Instead it is intended to

attach meaning to the variables chosen for inclusion in the final model. For this

reason, we strongly recommend that the selection procedure is based on an

underlying conceptual framework (see Chapter 38 for more detail), and that

formal stepwise methods are avoided because of the problems with them described

in Box 29.2.
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30.1 INTRODUCTION

All the statistical methods presented so far have been based on assuming a specific

probability distribution for the outcome, or for a transformation of the outcome.

Thus we have assumed a normal distribution for numerical outcomes, a binomial

distribution for binary outcomes and a Poisson distribution for rates. In this

chapter we describe three types of methods that can be used when these assump-

tions are violated. These are:

� non-parametric methods based on ranks, which are used when we have a

numerical outcome variable but wish to avoid specific assumptions about its

distribution, or cannot find a transformation under which the outcome is

approximately normal;

� bootstrapping, a very general technique that allows us to derive confidence

intervals making only very limited assumptions about the probability distribu-

tion of the outcome;

� robust standard errors, which allow derivation of confidence intervals and

standard errors based on the actual distribution of the outcome variable in

the dataset rather than on an assumed underlying probability distribution.

30.2 NON-PARAMETRIC METHODS BASED ON RANKS

Non-parametric methods based on ranks are used to analyse a numerical outcome

variable without assuming that it is approximately normally distributed. The key

feature of these methods is that each value of the outcome variable is replaced by

its rank after the variable has been sorted into ascending order of magnitude. For

example, if the outcome values were 453, 1, 5 and 39 then analyses would be based

on the corresponding ranks of 4, 1, 2 and 3.

As explained in Chapter 5, the central limit theorem tells us that as the sample

size increases the sampling distribution of a mean will tend to be normally

distributed even if the underlying distribution is non-normal. Rank methods are

therefore particularly useful in a small data set when there is obvious non-normal-

ity that cannot be corrected by a suitable transformation, or when we do not wish

CHAPTER 30

Relaxing model assumptions

30.1 Introduction

30.2 Non-parametric methods based

on ranks

Wilcoxon signed rank test

Wilcoxon rank sum test

Rank correlations

30.3 Bootstrapping

30.4 Robust standard errors



to transform the variable because transforming would make interpretation of the

results harder. They are less powerful (efficient in detecting genuine differences)

than parametric methods, but may be more robust, in the sense that they are

less affected by extreme observations. Rank methods have three main disadvan-

tages:

1 Their primary concern has traditionally been significance testing, since associ-

ated methods for deriving confidence limits have been developed only recently.

This conflicts with the emphasis in modern medical statistics on estimation of

the size of differences, and the interpretation of P-values in the context of

confidence intervals (see Chapter 8). In particular, large P-values from rank

order tests comparing two small samples have often been misinterpreted, in the

absence of confidence intervals, as showing that there is no difference between

two groups, when in fact the data are consistent either with no difference or

with a substantial difference. Bootstrapping, described in Section 30.3, pro-

vides a general means of deriving confidence intervals and so overcomes this

difficulty.

2 When sample sizes are extremely small, such as in comparing two groups with

three persons in each group, rank tests can never produce small P-values, even

when the values of the outcomes in the two groups are very different from each

other, such as 1, 2 and 3 compared with 21, 22 and 23. In contrast, the t-test

based on the normal distribution is able to detect such a clear difference

between groups. It will, of course, never be possible to verify the assumption

of normality in such small samples.

3 Non-parametric methods are less easily extended to situations where we wish to

take into account the effect of more than one exposure on the outcome. For

these reasons the emphasis in this book is on the use of parametric methods,

providing these are valid.

The main rank-order methods are listed in Table 30.1 together with their para-

metric counterparts. The most common ones, the Wilcoxon signed rank test, the

Wilcoxon rank sum test, Spearman’s rank correlation and Kendall’s tau, will be

described using examples previously analysed using parametric methods. For a

detailed account of non-parametric methods the reader is referred to Conover

(1999), Siegel and Castellan (1988) or Sprent and Smeeton (2000). Details of

methods to derive confidence intervals are given by Altman et al. (2000).

Wilcoxon signed rank test

This is the non-parametric counterpart of the paired t-test, and corresponds to a

test of whether the median of the differences between paired observations is zero

in the population from which the sample is drawn.

Example 30.1

We will show how to derive the Wilcoxon signed rank test using the data in Table

30.2, which shows the number of hours of sleep obtained by 10 patients when they
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Table 30.1 Summary of the main rank order methods. Those described in more detail in this section are shown in

italics.

Purpose of test Method Parametric counterpart

Examine the difference between

paired observations

Wilcoxon signed rank test Paired t-test

Simplified form of Wilcoxon signed

rank test

Sign test

Examine the difference between

two groups

Wilcoxon rank sum test Two-sample t-test

Alternatives to Wilcoxon rank sum

test that give identical results

Mann–Whitney U-test

Kendall’s S-test

Two-sample t-test

Examine the difference between two or

more groups. Gives identical results

to Wilcoxon rank sum test when

there are two groups

Kruskal–Wallis one-way analysis

of variance

One-way analysis of variance

Measure of the strength of association

between two variables

Kendall’s rank correlation

(Kendall’s tau)

Correlation coefficient

Alternative to Kendall’s rank correlation

that is easier to calculate.

Spearman’s rank correlation Correlation coefficient

Table 30.2 Results of a placebo-controlled clinical trial to test the effectiveness of a sleeping

drug (reproduced from Table 7.3), with ranks for use in the Wilcoxon signed rank test.

Hours of sleep

Patient Drug Placebo Difference Rank (ignoring sign)

1 6.1 5.2 0.9 2

2 6.0 7.9 �1.9 5

3 8.2 3.9 4.3 10

4 7.6 4.7 2.9 8

5 6.5 5.3 1.2 3

6 5.4 7.4 �2.0 6

7 6.9 4.2 2.7 7

8 6.7 6.1 0.6 1

9 7.4 3.8 3.6 9

10 5.8 7.3 �1.5 4

took a sleeping drug and when they took a placebo, and the differences between

them. The test consists of five steps:

1 Exclude any differences that are zero. Put the remaining differences in ascending

order of magnitude, ignoring their signs and give them ranks 1, 2, 3, etc., as shown

in Table 30.2. If any differences are equal then average their ranks.

2 Count up the ranks of the positive differences and of the negative differences

and denote these sums by Tþ and T� respectively.

Tþ ¼ 2þ 10þ 8þ 3þ 7þ 1þ 9 ¼ 40

T� ¼ 5þ 6þ 4 ¼ 15
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3 If there were no difference in effectiveness between the sleeping drug and the

placebo then the sums Tþ and T� would be similar. If there were a difference

then one sum would be much smaller and one sum would be much larger than

expected. Denote the smaller sum by T.

T ¼ smaller of Tþ and T�

In this example, T ¼ 15.

4 The Wilcoxon signed rank test is based on assessing whether T is smaller

than would be expected by chance, under the null hypothesis that the median

of the paired differences is zero. The P-value is derived from the sampling

distribution of T under the null hypothesis. A range for the P-value can

be found by comparing the value of T with the values for P ¼ 0:05, P ¼ 0:02

and P ¼ 0:01 given in Table A7 in the Appendix. Note that the appropriate

sample size, n, is the number of differences that were ranked rather than

the total number of differences, and does not therefore include the zero differ-

ences.

n ¼ number of non-zero differences

In contrast to the usual situation, the smaller the value of T the smaller is the

P-value. This is because the null hypothesis is that T is equal to the sum of the

ranks divided by 2, so that the smaller the value of T the more evidence there is

against the null hypothesis. In this example, the sample size is 10 and the 5%,

2% and 1% percentage points are 8, 5 and 3 respectively. The P-value is

therefore greater than 0.05, since 15 is greater than 8.

It is more usual to derive the P-value using a computer: in this example

P ¼ 0:20 so there is no evidence against the null hypothesis, and hence no

evidence that the sleeping drug was more effective than the placebo.

5 To derive an approximate 95% confidence interval for the median difference,

we consider the averages of the n(nþ 1)=2 possible pairs of differences. The

resulting 10� 11=2 ¼ 55 possible averages for this example are shown in Table

30.3. The approximate 95% CI is given by:

95% CI (median difference) ¼ T th smallest average to T th largest average

of the n(nþ 1)=2 possible pairs of differences, where

T is the value corresponding to the 2-sided P-value of 0:05 in Table A7
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Table 30.3 Fifty-five possible averages of the ten differences between patients’ hours of sleep after taking

a sleeping drug and their hours of sleep after taking a placebo.

�2.0 �1.9 �1.5 0.6 0.9 1.2 2.7 2.9 3.6 4.3

�2.0 �2 �1.95 �1.75 �0.7 �0.55 �0.4 0.35 0.45 0.8 1.15

�1.9 �1.9 �1.7 �0.65 �0.5 �0.35 0.4 0.5 0.85 1.2

�1.5 �1.5 �0.45 �0.3 �0.15 0.6 0.7 1.05 1.4

0.6 0.6 0.75 0.9 1.65 1.75 2.1 2.45

0.9 0.9 1.05 1.8 1.9 2.25 2.6

1.2 1.2 1.95 2.05 2.4 2.75

2.7 2.7 2.8 3.15 3.5

2.9 2.9 3.25 3.6

3.6 3.6 3.95

4.3 4.3

In this example, T ¼ 8, and so the 95% confidence interval is from the 8th

smallest average to the 8th largest average. These are found from Table 30.3 to

be �0.65 and 2.9 respectively.

95% confidence interval for median difference ¼ �0:65 to 2:9

Further details of the assumptions underlying the Wilcoxon signed rank test and

the confidence interval for the median difference are given in Conover (1999).

Wilcoxon rank sum test

This is one of the non-parametric counterparts of the t-test, and is used to assess

whether an outcome variable differs between two exposure groups. Specifically, it

examines whether the median difference between pairs of observations from the

two groups is equal to zero. If, in addition, we assume that the distributions of the

outcome in the two groups are identical except that they differ by a constant

amount (that is, they ‘differ only in location’) then the null hypothesis of the test is

that the difference between the medians of the two distributions equals zero.

Example 30.2

The use of the Wilcoxon rank sum test will be described by considering the data in

Table 30.4, which shows the birth weights of children born to 15 non-smokers and

14 heavy smokers. It consists of three steps:

1 Rank the values of the outcome from both groups together in ascending order of

magnitude, as shown in the table. If any of the values are equal, average their

ranks.

2 Add up the ranks in the group with the smaller sample size. If there were no

difference between the groups then the ranks would on average be similar. In
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Table 30.4 Comparison of birth weights of children born to 15 non-

smokers with those of children born to 14 heavy smokers (reproduced

from Table 7.1), with ranks for use in the Wilcoxon rank sum test.

Non-smokers (n ¼ 15) Heavy smokers (n ¼ 14)

Birth weight (kg) Rank Birth weight (kg) Rank

3.99 27 3.18 7

3.89 26 2.74 4

3.6* 17.5 2.9 6

3.73 24 3.27 9

3.31 10 3.65y 20.5

3.7 23 3.42 13

4.08 28 3.23 8

3.61 19 2.86 5

3.83 25 3.6* 17.5

3.41 12 3.65y 20.5

4.13 29 3.69 22

3.36 11 3.53 15

3.54 16 2.38 2

3.51 14 2.34 1

2.71 3

Sum ¼ 284:5 Sum ¼ 150:5

*Tied 17th and 18th and so ranks averaged
yTied 20th and 21st and so ranks averaged

this case the group with the smaller sample size is the heavy smokers, and their

ranks sum to 150.5. If the two groups are of the same size either one may be

picked.

T ¼ sum of ranks in group with smaller sample size

3 Compare the value ofTwith the values in Table A8, which is arranged somewhat

differently to the tables for the other tests. Look up the row corresponding to the

sample sizes of the two groups, in this case row 14, 15. The range shown for

P ¼ 0:01 is 151 to 269: values inside this range (i.e. between 151 and 269)

correspond to P-values greater than 0.01. Sums of 151 and below or 269 and

above correspond to P-values less than 0.01. The sum of 150.5 in this example is

just below the lower limit of 151, so the P-value is slightly less than 0.01.

As with the signed rank test, theP-value is usually derived using a computer. In

this case P ¼ 0:0094: there is good evidence against the null hypothesis that the

median birth weight of children born to heavy smokers is the same as the median

birth weight of children born to non-smokers.

Details of how to derive a confidence interval for the difference in medians

(assuming that the two distributions differ only in location) are given by Conover
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(1999) and in Altman et al. (2000). Such confidence intervals are known as

Hodges–Lehmann estimates of shift. In this example, we find (using a computer)

that the 95% CI is from � 0.77 to �0.09. In Section 30.3 we see how bootstrap

methods can also be used to provide a confidence interval for the difference

between medians.

Rank correlations

We will now consider two rank order measures of the association between two

numerical variables: Kendall’s tau and Spearman’s rank correlation. The paramet-

ric counterpart of these measures is the correlation coefficient, sometimes known as

the Pearson product moment correlation, which was described in Chapter 10.

Example 30.3

We will explain these measures of association using the data in Table 30.5 on the

relationship between plasma volume and body weight in eight healthy men. We

will call these two quantitative variables Y and X. The Pearson correlation

between these was shown in Section 10.3 to be 0.76.

To calculate Spearman’s rank correlation coefficient rs:

1 Independently rank the values of X and Y.

2 Calculate the Pearson correlation between the ranks, rather than between the

original measurements. Other formulae for the Spearman correlation are often

quoted; these give identical results. This gives a value of 0.81 in this example.

Kendall’s tau (denoted by the Greek letter �) is derived as follows:

1 Compare the ranks of X and Y between each pair of men. There are n(n� 1)=2

possible pairs. The pairs of ranks for subjects i and j are said to be:

(a) concordant if they differ in the same directions, that is if both the X and Y

ranks of subject i are lower than the corresponding ranks of subject j, or

both are higher. For example, the ranks of subjects 1 and 2 are concordant

Table 30.5 Relationship between plasma volume and body weight in eight healthy

men (reproduced from Table 10.1), with ranks used in calculating the Spearman rank

correlation.

Body weight (X) Plasma volume (Y)

Subject Value (kg) Rank Value (litre) Rank

1 58.0 1 2.75 2

2 70.0 5 2.86 4

3 74.0 8 3.37 7

4 63.5 3 2.76 3

5 62.0 2 2.62 1

6 70.5 6 3.49 8

7 71.0 7 3.05 5

8 66.0 4 3.12 6
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(a) as subject 1 has a lower rank than subject 2 for both the variables. The

pair 3 and 8 is also concordant: subject 3 has higher ranks than subject 8

on both variables.

(b) discordant if the comparison of the ranks of the two variables is in

opposite directions. For example, the ranks of subjects 3 and 6 are

discordant as subject 3 has a more highly ranked X value than subject 6

but a lower ranked Y value.

2 Count the number of concordant pairs (nC) and the number of discordant pairs

(nD), and calculate � as:

� ¼ nC � nD

n(n� 1)=2

In this example, Kendall’s tau (derived using a computer) is 0.64. If all pairs are

concordant then � ¼ 1, while if all pairs are discordant then � ¼ �1. More

details, including an explanation of how to deal with ties, are given by Conover

(1999).

All three measures of correlation have values between 1 and �1. Although

Spearman’s rank correlation is better known, its only advantage is that it is easier

to calculate without a computer. Kendall’s tau is the preferred rank measure,

because its statistical properties are better and because it is easier to interpret.

Given two pairs of observations (X1, Y1) and (X2, Y2) Kendall’s tau is the

difference between the probability that the bigger X is with the bigger Y, and the

probability that the bigger X is with the smaller Y.

If X and Y are each normally distributed then there is a direct relationship

between the Pearson correlation (r) and both Kendall’s � and Spearman’s rank

correlation (rs):

r ¼ sin
�

2
�


 �
¼ 2sin

�

6
rs


 �

This means that Pearson correlations of 0, 	1=2, 	0.7071 and 	 1 correspond to

Kendall � values of 0, 	1=3, 	1=2 and 	 1 and to Spearman rank correlations of

0, 	 0.4826, 	 0.6902 and 	 1, respectively.

30.3 BOOTSTRAPPING

Bootstrapping is a way of deriving confidence intervals while making only very

limited assumptions about the probability distribution that gave rise to the data.

The name derives from the expression ‘pull yourself up by your bootstraps’, which

means that you make progress through your own efforts; without external help. It
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is based on a remarkably simple idea: that if we take repeated samples from the

data themselves, mimicking the way that the data were sampled from the popula-

tion, we can use these samples to derive standard errors and confidence intervals.

The new samples are drawn with replacement from the original data. That is, we

pick an observation at random from the original data, note down its value, then

pick another observation at random from the same original data, regardless of

which observation was picked first. This continues until we have a new dataset of

the same size as the original one. The samples differ from each other because some

of the original observations are picked more than once, while others are not

picked at all.

Example 30.4

We will illustrate this using the data on birth weight and smoking, shown in Table

30.4. The median birth weight among the children born to the non-smokers

was 3.61 kg, while the median among children born to the smokers was

3.25 kg. The difference in medians comparing smokers with non-smokers

was therefore �0.36 kg. The P-value for the null hypothesis that the median birth

weight is the same in smokers and non-smokers (derived in Section 30.2 using the

Wilcoxon rank sum test) was 0.0094. The non-smokers and heavy smokers were

recruited separately in this study, and so the bootstrap sampling procedure mimics

this by sampling separately from the non-smokers and from the heavy smokers.

Therefore each bootstrap sample will have 15 non-smokers and 14 heavy smokers.

This process is illustrated, for two bootstrap samples, in Table 30.6. In the first

bootstrap sample observations 1, 3, 4 and 5 were not picked, observation 2 was

picked four times, observations 6 and 7 were picked once and so on. In this sample

the difference in median birth weight was �0.48 kg, while in the second sample the

difference was �0.26 kg.

We repeat this procedure a large number of times, and record the difference

between the medians in each sample. To derive confidence intervals, a minimum of

around 1000 bootstrap samples is needed. Figure 30.1 is a histogram of the

differences in medians derived from 1000 bootstrap samples from the birth weight

data.

The simplest way to derive a 95% confidence interval for the difference between

medians is to use the percentile method and take the range within which 95% of

these bootstrap differences lie, i.e. from the 2.5th percentile to the 97.5th percentile

of this distribution. This gives a 95% CI of �0.87 to �0.01 kg.

Unfortunately the percentile method, though simple, is not the most accurate

method for deriving bootstrap confidence intervals. This has led to the develop-

ment of bias corrected (BC) and bias corrected and accelerated (BCa) intervals, of

which BCa intervals have been shown to have the best properties. For the birth

weight data, use of the BC method gives a 95% CI of �0.80 to 0.025 kg, while the

BCa method gives a 95% CI of �0.71 to 0.12 kg. More information about the use

of bootstrap methods can be found in Efron and Tibshirani (1993) and in Davison

and Hinkley (1997).
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Table 30.6 Two bootstrap samples, based on data on birth weights (kg) of children born to 15 non-smokers and

of children born to 14 heavy smokers.

Original data First bootstrap sample Second bootstrap sample

Obs. no.

Birth

weight Smoker

Original

obs. no.

Birth

weight Smoker

Original

obs. no.

Birth

weight Smoker

1 3.99 No 2 3.89 No 1 3.99 No

2 3.89 No 2 3.89 No 1 3.99 No

3 3.60 No 2 3.89 No 2 3.89 No

4 3.73 No 2 3.89 No 3 3.60 No

5 3.31 No 6 3.70 No 3 3.60 No

6 3.70 No 7 4.08 No 4 3.73 No

7 4.08 No 8 3.61 No 6 3.70 No

8 3.61 No 8 3.61 No 6 3.70 No

9 3.83 No 8 3.61 No 8 3.61 No

10 3.41 No 9 3.83 No 8 3.61 No

11 4.13 No 9 3.83 No 9 3.83 No

12 3.36 No 10 3.41 No 12 3.36 No

13 3.54 No 11 4.13 No 12 3.36 No

14 3.51 No 11 4.13 No 12 3.36 No

15 2.71 No 15 2.71 No 15 2.71 No

16 3.18 Yes 16 3.18 Yes 19 3.27 Yes

17 2.74 Yes 19 3.27 Yes 19 3.27 Yes

18 2.90 Yes 19 3.27 Yes 19 3.27 Yes

19 3.27 Yes 20 3.65 Yes 21 3.42 Yes

20 3.65 Yes 20 3.65 Yes 22 3.23 Yes

21 3.42 Yes 20 3.65 Yes 22 3.23 Yes

22 3.23 Yes 20 3.65 Yes 23 2.86 Yes

23 2.86 Yes 21 3.42 Yes 25 3.65 Yes

24 3.60 Yes 24 3.60 Yes 25 3.65 Yes

25 3.65 Yes 26 3.69 Yes 25 3.65 Yes

26 3.69 Yes 28 2.38 Yes 26 3.69 Yes

27 3.53 Yes 29 2.34 Yes 27 3.53 Yes

28 2.38 Yes 29 2.34 Yes 27 3.53 Yes

29 2.34 Yes 29 2.34 Yes 29 2.34 Yes

Median in non-smokers¼ 3.61 Median in non-smokers¼ 3.83 Median in non-smokers¼ 3.61

Median in smokers¼ 3.25 Median in smokers¼ 3.35 Median in smokers¼ 3.35

Difference in medians¼�0.36 Difference in medians¼�0.48 Difference in medians¼�0.26

We have illustrated the use of bootstrapping using a simple comparison of

medians, but the method is quite general and can be used to derive confidence

intervals for any parameter of a statistical model. For example, we might fit a

regression model for the effect of smoking on birthweight, controlling for a

number of other variables, then derive a bootstrap confidence interval by

repeating this regression on 1000 different bootstrap samples and recording the

value of the regression coefficient estimated in each. An example of the derivation

of different types of bootstrap confidence interval for proportional hazards

models is given by Carpenter and Bithell (2000). If the model assumptions are not
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Fig. 30.1 Histogram of the differences in medians (kg) derived from 1000 bootstrap samples of the data on

birth weight and smoking.

violated then the bootstrap confidence interval should be similar to the usual confi-

dence interval reported in the regression output.

An example of the use of bootstrapping is provided by Thompson and Barber

(2000), who consider the analysis of data on costs of treatment in clinical trials.

Costs are often highly skewed, because a small minority of patients incur much

higher costs of treatment than the rest. Because of this such data have often been

analysed by log transforming the costs and performing a t-test. This is a valid

approach, but it will lead to an estimate of the difference in mean log costs (which

can be converted to a ratio of geometric mean costs, see Chapter 13). The problem

is that health service planners are interested in a comparison of mean costs and not

in a comparison of mean log costs, or in the difference in median costs that might

be evaluated using non-parametric methods. Bootstrapping provides a way of

deriving confidence intervals for the difference in mean costs between two groups,

in circumstances when the non-normality of costs means that confidence intervals

from standard methods (t-tests or regression) may not be valid.

30.4 ROBUST STANDARD ERRORS

It was explained in Chapter 28 that when we estimate parameters using the

likelihood approach then the standard error of the parameter estimate is derived

from the curvature of the likelihood at the maximum – the more information

which the data provide about the parameter the more sharply curved is the

likelihood and the smaller the standard error. Throughout this book we have

used suchmodel-based standard errors to derive confidence intervals and P-values.

Sometimes, we are not confident that the precise probability model underlying

the likelihood is correct, and so we may not wish to rely on the likelihood to
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provide standard errors for our parameter estimates. Examples of this situation

are when the residuals in a multiple regression model are clearly non-normal

(see Chapter 12) or when the data are clustered (as discussed in Chapter 31).

An alternative approach, suggested independently by Huber (1967) and White

(1980) is to estimate standard errors using the variability in the data. The formula

is based on the residuals (the difference between the outcome and its predicted

value in the regression model, see Section 12.3). Standard errors estimated in this

way are known as robust standard errors and the corresponding variance estimate

is known as the sandwich variance estimate, because of the mathematical form of

the formula used to estimate it. If the sample size is large enough then, providing

that our basic regression model for the mean of the outcome given the level of the

exposure variables is correct, robust standard errors will be correct, even if the

probability model for the outcome variable is wrong. Robust standard errors thus

provide a general means of checking how reasonable are the model-based stand-

ard errors (which are calcuated assuming that the probability model is correct).

Example 30.5

In Section 11.3 we fitted a multiple regression model of lung function (FEV1,

litres) on age, height and gender among 636 children aged 7 to 10 years living in a

suburb of Lima, Peru. However, in Section 12.3 we saw that there may be an

association between the residuals and predicted values in this regression model: if

this association is real, it would violate an assumption underlying the regression

model.

Table 30.7 shows the results of re-analysing these data specifying robust stand-

ard errors, compared to the results using model-based standard errors. Note that

the regression coefficients are the same whichever we use. The effect of specifying

robust standard errors varies for each of the exposure variables. For age and

gender (variable ‘male’) the standard error is only slightly increased but for height

the standard error is increased by about 17%, with a corresponding reduction in

the t-statistic (from 14.04 to 11.51) and an increase in the width of the confidence

intervals. In this example, our conclusions are broadly similar whether we use

model-based or robust standard errors.

Table 30.7 Regression coefficients, model-based standard errors and robust standard errors, each with

corresponding t-statistics from the linear regression model relating FEV1 to age, height and gender of the child

in the Peru study.

Regression
Model-based standard error Robust standard error

FEV1 coefficient s.e. t s.e. t

Age 0.0946 0.0152 6.23 0.0159 5.96

Height 0.0246 0.0018 14.04 0.0021 11.51

Male 0.1213 0.0176 6.90 0.0177 6.87

Constant �2.360 0.1750 �13.49 0:208 �11.34
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31.1 INTRODUCTION

The statistical methods discussed so far in this book are based on the assumption

that the observations in a sample are independent of each other, that is the value of

one observation is not influenced by the value of another. This assumption of

independence will be violated if the data are clustered, that is if observations in one

cluster tend to be more similar to each other than to individuals in the rest of the

sample. Clustered data arise in three main ways:

1 Repeated measures in longitudinal studies. In this case the clusters are the

subjects; repeated observations on the same subject will be more similar to

each other than to observations on other subjects. For example:

� in studies of asthma or other chronic diseases, episodes of disease may

occur on more than one occasion in the same subject;

� in longitudinal studies of common childhood diseases in developing coun-

tries, children may experience several episodes of diarrhoea, malaria or

acute respiratory infections during the course of the study;

� in a study of cardiovascular disease and obesity, measurements of blood

pressure, body mass index and cholesterol levels may be repeated every

3months.

2 Multiple measures on the same subject. For example, in dental research observa-

tions are made on more than one tooth in the same subject. In this case the

clusters are again subjects.

3 Studies in which subjects are grouped. This occurs for example in:

� cluster randomized trials (see Chapter 34), in which groups rather than

individuals are randomized to receive the different interventions under

trial. For example, the unit of randomization might be general practices,

with all patients registered in a practice receiving the same intervention.

Since patients in a general practice may be more similar to each other than
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to patients in other general practices, for example because some areas tend

to be more deprived than others or because of exposure to a common

environmental hazard, the data are clustered. In this case the cluster is the

group of patients registered with a general practice;

� family studies, since individuals in the same family are likely to be more

similar to each other than to individuals in different families, because they

share similar genes and a similar environment. In this case the cluster is the

family;

� surveys where cluster sampling is employed (see Chapter 34). For example,

in order to estimate the percentage of 14-year-olds in London that work at

weekends, we might select 1000 children by randomly sampling 20 schools

from all the schools in London, then randomly sample 50 children from

each of the selected schools. As the children within a school may be more

similar to each other than to children in different schools, the data are

clustered. In this case the clusters are the schools.

It is essential that the presence of clustering is allowed for in statistical analyses.

The main reason for this, as we shall see, is that standard errors may be too small if

they do not take account of clustering in the data. This will lead to confidence

intervals that are too narrow, and P-values that are too small.

We will discuss four appropriate ways to analyse clustered data:

1 calculate summary measures for each cluster, and analyse these summary meas-

ures using standard methods;

2 use robust standard errors to correct standard errors for the clustering;

3 use random effects models which explicitly model the similarity between indi-

viduals in the same cluster;

4 use generalized estimating equations (GEE) which adjust both standard errors

and parameter estimates to allow for the clustering.

We will illustrate the importance of taking clustering into account in the context of

the following hypothetical example.

Example 31.1

In a study of the effect of ‘compound X’ in drinking water on rates of dental

caries, 832 primary school children in eight different schools were monitored to

ascertain the time until they first required dental treatment. Table 31.1 shows data

for the first 20 children in the study (all of whom were in school 1). Since

compound X is measured at the school level, it is constant for all children in the

same school. The data are therefore clustered and the clusters are the eight

schools.

Table 31.2 summarizes the data for each school by showing the number of

children requiring dental treatment, the total child-years of follow-up, the treat-

ment rate per 100 child-years and the level of compound X in the school’s drinking

water. Results from a Poisson regression analysis of these data are shown in Table

31.3. This shows strong evidence that increased levels of compound X were

associated with decreased rates of dental treatment among the school children.
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Table 31.1 Data on the first 20 children in a study of the relationship between rates of dental treatment and the

level of compound X in drinking water.

Child’s id Years of follow up

Required dental treatment

during follow up? School number

Level of compound X in

school’s water supply

(1000� ppm)

1 4.62 No 1 7.1

2 3.00 No 1 7.1

3 4.44 No 1 7.1

4 3.89 No 1 7.1

5 3.08 No 1 7.1

6 2.45 Yes 1 7.1

7 2.64 Yes 1 7.1

8 4.16 No 1 7.1

9 4.25 No 1 7.1

10 2.02 Yes 1 7.1

11 3.13 No 1 7.1

12 3.49 No 1 7.1

13 4.75 No 1 7.1

14 2.39 Yes 1 7.1

15 3.66 No 1 7.1

16 3.43 No 1 7.1

17 2.63 Yes 1 7.1

18 4.21 No 1 7.1

19 2.63 Yes 1 7.1

20 2.74 No 1 7.1

Table 31.2 Total child-years of follow-up, treatment rate per 100 child-years and the level of compound X in each

school’s drinking water, from a study of the effect of compound X in drinking water on the 832 children attending

eight primary schools.

School

Number of children

requiring dental

treatment Child-years of follow-up

Rate per 100

child-years

Level of compound X

(1000 � ppm)

1 46 456.3 10.08 7.1

2 19 215.1 8.83 7.6

3 17 487.8 3.49 8.2

4 46 459.9 10.00 5.4

5 15 201.2 7.46 8.4

6 20 187.7 10.66 6.8

7 58 399.1 14.53 6.2

8 20 212.5 9.41 8.9

However, treatment rates among different children in the same school may tend to

be more similar than treatment rates in children in different schools for reasons

unrelated to the levels of compound X in the water, for example because children

in the same school are of similar social background. There would then be more

observed between-school variability than would be expected in the absence of

clustering, in which case the strength of the association between treatment rates
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Table 31.3 Poisson regression of the effect of compound X in drinking water on rates of dental treatment among

832 children attending eight primary schools.

(a) Results on rate ratio scale

Rate ratio z P > jzj 95% CI

Compound X 0.821 �3:47 0.001 0.734 to 0.918

(b) Results on log scale

Coefficient s.e. z P > jzj 95% CI

Compound X �0:1976 0.0570 �3:47 0.001 �0:3094 to �0.0859

Constant 3.6041 0.3976 9.07 0.000 2.8248 to 4.3833

and levels of compound X may be exaggerated by the analysis in Table 31.3, which

does not allow for such clustering.

31.2 ANALYSES USING SUMMARY MEASURES FOR EACH CLUSTER

The simplest way to analyse clustered data is to derive summary measures for each

cluster. Providing that the outcomes in different clusters are independent, standard

methods may then be used to compare these summary measures between clusters.

Example 31.1 (continued)

For example, wemight analyse the compoundXdata by doing a linear regression of

the log treatment rate in each school on levels of compoundX in the school. Results

of such a regression are shown in Table 31.4. The estimated increase in the log

rate ratio per unit increase in level of compoundX is�0.1866, similar to the value of

�0.1976 estimated in the Poisson regression analysis in Table 31.3. However, the

standard error is much larger and there is now no evidence of an association

(P ¼ 0:177). Note that the estimated rate ratio per unit increase in level of com-

pound X is simply exp(�0.1866) ¼ 0.830, and that 95% confidence limits for the

rate ratiomay be derived in a similar way, from the 95%CI in the regression output.

The regression analysis in Table 31.4 is a valid way to take into account the

clustering in the data. It suggests that the standard error for the compound X effect

in the Poisson regression analysis in Table 31.3 was too small, and therefore that the

assumption made in that analysis, that treatment rates among different children in

the same school were statistically independent, was incorrect. Thus this analysis

using summary measures has confirmed the presence of clustering within schools.

Table 31.4 Linear regression of the effect of compound X on the log of the treatment rate in each school.

Coefficient s.e. t P > t 95% CI

Compound X �0.1866 0.1220 �1.53 0.177 �0.4850 to 0.1119

Constant 3.5334 0.9035 3.91 0.008 1.3227 to 5.7441
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Fig. 31.1 Rate of dental treatment in each school (log scale), with corresponding 95% confidence intervals

shown by the vertical lines.

Although analyses based on summary measures may be perfectly adequate in

some circumstances, they can have disadvantages:

1 They do not enable us to estimate the effect of characteristics of individuals within

the cluster. For example, rates of treatment might vary according to the age and

gender of the children. Similarly, in a longitudinal study of factors associated

with episodes of asthma, this approach would not allow us to examine whether

subjects who had a viral infection were at increased risk of an episode of asthma

during the subsequent week.

2 They take no account of the precision with which each of the cluster measures is

estimated. In this example, the cluster measures are the rates in each school. The

more events (children requiring treatment), the more precise is the estimated

rate. For example, in school 5 only 15 children required treatment while in

school 7, 58 children required treatment. The varying precision with which the

treatment rate in each school is estimated is illustrated by the varying widths of

the confidence intervals in Figure 31.1.

31.3 USE OF ROBUST STANDARD ERRORS TO ALLOW FOR

CLUSTERING

As explained in the last section, the presence of clustering means that the standard

errors obtained from the usual regression model will be too small. In Chapter
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30 we introduced robust standard errors, which are estimated using the variability

in the data (measured by the residuals) rather than the variability assumed by

the statistical model. We can use a modified type of robust standard error

as another approach to correct for clustering. To do this we add the

residuals within each cluster together, and then use the resulting cluster-

level residuals to derive standard errors that are valid in the presence of

clustering.

Example 31.1 (continued)

Table 31.5 shows the results from a Poisson regression analysis based on

robust standard errors that allow for within-school clustering. The rate ratio is

identical to that from the standard Poisson regression analysis shown in Table

31.3, but the standard error of the log rate ratio has increased from 0.0570 to

0.1203. This analysis gives similar results to the linear regression analysis using

summary measures shown in Table 31.4: there is at most weak evidence for an

association between levels of compound X and treatment rates. However, because

the analysis is based on individual children we could now proceed to control for the

effect of child characteristics.

Important points to note in the use of robust standard errors to correct stand-

ard errors for clustering are:

� Robust standard errors use cluster-level residuals to take account of the simi-

larity of individuals in the same cluster. In the presence of clustering, they will

be larger than standard errors obtained from the usual regression model ignor-

ing clustering.

� Use of robust standard errors does not affect the parameter estimate.

� Robust standard errors will be correct providing our model is correct and we

have a reasonable number of clusters (� 30).

� The log likelihood is not affected when we specify robust standard errors, and

so likelihood ratio tests do not take account of the clustering. Wald tests must

therefore be used.

Table 31.5 Poisson regression of the effect of compound X levels in drinking water on rates of dental treatment in

eight primary schools, using robust standard errors to allow for the clustering.

(a) Results on rate ratio scale

Rate ratio z P > jzj 95% CI

Compound X 0.821 �1.643 0.100 0.648 to 1.039

(b) Results on log scale

Coefficient s.e. z P > jzj 95% CI

Compound X �0.1976 0.1203 �1.643 0.100 �0.4333 to 0.0381

Constant 3.6041 0.8147 4.42 0.000 2.0073 to 5.2008
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31.4 RANDOM EFFECTS (MULTILEVEL) MODELS

Arguably the most satisfactory approach to the analysis of clustered data is to use

random effects models that explicitly allow for the clustering. The simplest such

models allow the average response to vary between clusters. This is done by

modifying the standard linear predictor (see Section 29.2) to include an amount

that varies randomly between clusters:

linear predictor for an individual in cluster j ¼ �0 þ �1x1 þ �2x2 þ . . .þ �pxp þ uj

The random effect uj is assumed to have mean zero, and to vary randomly between

clusters. It is assumed that the set of random effects {uj} explain the clustering in the

data so that, having allowed for the random effects, different observations in the

same cluster are independent. Random effects models are also known as multilevel

models, because of the hierarchical data structure in which observations at the first

level (the individuals) are nested within observations at the second level (the

cluster). Table 31.6 shows common assumptions made for the distribution of the

random effects for different types of regression models.

For numerical outcomes it is usual to assume that both the outcome variable

within clusters and the random effects are normally distributed; the resulting

distribution is also normal. For Poisson regression models, it is commonly as-

sumed that the random effects {uj} have a gamma distribution, which is a gener-

alization of the �2 distribution. The combination of the Poisson distribution for

the outcome within clusters and the gamma distribution of the random effects

leads to a distribution called the negative binomial, so such random effects models

are also called negative binomial regression models. For logistic regression models,

there is no such mathematically well-defined ‘composite’ distribution, and estima-

tion of these random-effects models has until recently been either unavailable or

difficult and time-consuming.

Random-effects models are now available in a number of statistical computer

packages, and are fairly straightforward to fit. In addition, specialist software

packages are available. The relevant routines are referred to as random effects

models, mixed models, multilevel models, hierarchical models and cross-sectional

time series depending on the particular package. The latter name arises from the

Table 31.6 Distribution used for random effects in commonly used regression

models.

Type of outcome Type of standard regression Distribution of random effects

Numerical Linear Normal

Binary Logistic Normal

Rate Poisson Gamma
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use of this approach for repeated measures in longitudinal data (see Section 31.1),

but is equally applicable to other types of clustered data.

Example 31.1 (continued)

Table 31.7 shows results from a random-effects Poisson regression analysis of the

effect of levels of compound X in drinking water on rates of dental treatment.

Compared to the standard Poisson regression model shown in Table 31.3 the log

rate ratio is only slightly changed, but after allowing for the clustering the

standard error is much larger than the model-based standard error, and there

now appears to be at most weak evidence for an association. We can conclude

there is more between-school variability than assumed by the Poisson model,

because of the increase in the standard error. A likelihood ratio test for clustering

can be derived by comparing the log-likelihood for this model with that from a

standard Poisson regression model.

The standard error from the random effects model (0.1030) is similar to that in

the Poisson regression model with robust standard errors (0.1203). Note, however,

that in the random effects model both the parameter estimate (the log rate ratio)

and its standard error are modified when we allow for clustering.

Table 31.7 Random-effects Poisson regression of the effect of compound X levels in drinking water on rates of

dental treatment in eight primary schools, allowing for within-school clustering.

(a) Results on rate ratio scale

Rate ratio z P > jzj 95% CI

Compound X 0.8333 �1.77 0.077 0.6809 to 1.0198

(b) Results on log scale

Coefficient s.e. z P > jzj 95% CI

Compound X �0.1824 0.1030 �1.77 0.077 �0.3843 to 0.0196

Constant 3.5291 0.7459 4.73 0.000 2.0672 to 4.9909

Example 31.2

In a clinical trial to assess the efficacy and safety of budesonide for the treatment

of patients with chronic asthma, 91 patients were treated with a daily dose of

200�g of budesonide (treatment group) and 92 patients were treated with placebo

(control group). The outcome variable was FEV1 (the maximum volume of air

that an individual can exhale in 1 second, see Section 11.2), and this was recorded

at baseline (before the start of treatment) and at 2, 4, 8 and 12weeks after the start

of treatment. Figure 31.2 shows that the mean FEV1 in the treatment and control

groups were similar at the start of treatment (as would be expected in a random-

ized trial) but diverged subsequently: FEV1 improved in the treatment group but

not in the control group.
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Fig. 31.2 Mean FEV1 (with 95% CIs) in the treatment and control groups at baseline (0weeks) and up to

12weeks from the start of treatment, in a trial of 183 patients with chronic asthma.

Table 31.8 shows the results of three possible analyses of these data that take

into account the fact that the means at different times are based on the same two

groups of patients:

1 The first uses the average post-treatment FEV1 for each patient, based on four

time points for patients for whom there was complete follow-up, and on one,

two or three time points for patients for whom some post-treatment measure-

ments were missed. The linear regression of the mean post-treatment FEV1 in

each subject estimates that the average post-treatment FEV1 is 0.2998 litres

higher for those who received budesonide compared to those who received

placebo. Note that this is equivalent to a t-test comparing the mean of the

average post-treatment FEV1 measurements between the treatment and control

groups.

2 In the second analysis, the linear regression is based on the individual post-

treatment measurements with robust standard errors used to allow for cluster-

ing of the measurements at different time points within subjects.

3 The third analysis is a random-effects linear regression of the post-treatment

FEV1 in each subject at each time.

The conclusions are similar in each case: treatment increased FEV1 by a mean of

approximately 0.3 litres. Standard errors, and hence confidence intervals and P-

values, are also similar in the three models.

A random effects model explicitly includes both between-cluster and within-

cluster variation. For a numerical outcome (as in Example 31.2) the model is:
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yij ¼ �0 þ �1x1ij þ �2x2ij þ . . .þ �pxpij þ eij þ uj, where

yij is the outcome for individual i in cluster j

x1ij to xpij are the values of the p exposure variables for that individual

eij is the individual-level random error, and is normally distributed

with mean 0 and variance �2
e

uj is the cluster-level random error, and is normally distributed

with mean 0 and variance �2
u

This model is the same as the multiple regression model described in Section 11.4,

with the addition of the cluster-level random effect uj. The regression output for the

random-effects model in Table 31.8(c) shows the estimated between-patient stand-

ard deviation (�u ¼ 0:6828) and within-patient standard deviation (�e ¼ 0:2464).

Table 31.8 Regression models to investigate the effect of budesonide treatment on FEV1 in a clinical trial of 183

patients with chronic asthma. Analyses by kind permission of Dr Carl-Johan Lamm and Dr James Carpenter.

(a) Standard linear regression using the mean post-treatment FEV1 measurements in each subject

Coefficient s.e. t P > jtj 95% CI

Treatment 0.2998 0.1033 2.90 0.004 0.0960 to 0.5037

Constant 1.8972 0.0729 26.04 0.000 1.7534 to 2.0409

(b) Linear regression using the post-treatment FEV1 measurements in each subject at each time, with robust

standard errors allowing for clustering within subjects

Coefficient Robust s.e. t P > jtj 95% CI

Treatment 0.2812 0.1044 2.69 0.008 0.0753 to 0.4872

Constant 1.9157 0.0679 28.22 0.000 1.7818 to 2.0497

(c) Random-effects linear regression

Coefficient s.e. z P > jzj 95% CI

Treatment 0.2978 0.1028 2.90 0.004 0.0963 to 0.4993

Constant 1.8992 0.0727 26.13 0.000 1.7567 to 2.0416

�u 0.6828 0.0370 18.46 0.000 0.6103 to 0.7553

�e 0.2464 0.0076 32.23 0.000 0.2314 to 0.2614

Intraclass correlation coefficient

The amount of clustering can be measured using the intraclass correlation coeffi-

cient (ICC), which is defined as the ratio of the between-cluster variance to the

364 Chapter 31: Analysis of clustered data



total variance, which is a combination of the between- and within-cluster vari-

ances.

Intraclass correlation coefficient, ICC ¼ �2
u

�2
u þ �2

e

If all the variation is explained by differences between clusters, so that there is no

variation within clusters and �2
e ¼ 0, then ICC ¼ 1. If �2

u is estimated to be zero

then there is no evidence of clustering and ICC ¼ 0. In Example 31.2,

ICC ¼ 0:68282=(0:68282 þ 0:24642) ¼ 0:885

so nearly 90% of the variation in FEV1, after accounting for the effect of

treatment, was between patients rather than within patients.

Although the P-value for �u corresponds to a Wald test of the presence of

clustering, it is preferable to test for clustering using a likelihood ratio test; by

comparing the log likelihood from the random-effects model (Linc) with the log

likelihood from a standard regression model assuming no clustering (Lexc).

Including cluster-level and individual-level characteristics in random effects

models

The effects on the outcome variable of both cluster characteristics and of

characteristics of individual observations within clusters may be included in

random-effects models. For the asthma trial data, this corresponds to including

characteristics of patients and of observations at different times on the same patient.

Example 31.2 (continued)

In Table 31.9 the random-effects model shown in Table 31.8(c) has been extended

to include patients’ FEV1 measurements before the start of treatment (a cluster

Table 31.9 Random-effects linear regression of the effect of budesonide treatment on FEV1 in a clinical trial of 183

patients with chronic asthma, including baseline FEV1 and a treatment-time interaction.

Coefficient s.e. z P > jzj 95% CI

treatment 0.2695 0.0772 3.49 0.000 0.1182 to 0.4207

weeks �0.0104 0.0035 �2.96 0.003 �0.0173 to �0.0035

treat.weeks 0.0127 0.0049 2.62 0.009 0.0032 to 0.0222

fevbase 0.7562 0.0577 13.12 0.000 0.6432 to 0.8692

constant 0.4039 0.1293 3.12 0.002 0.1504 to 0.6574

�u 0.4834 0.0271 17.85 0.000 0.4303 to 0.5364

�e 0.2445 0.0076 32.17 0.000 0.2296 to 0.2594
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characteristic) and the interaction between treatment and time (a covariate that

varies within clusters).

The interpretation of regression coefficients in models including interaction was

explained in detail in Section 29.5. Variable weeks was coded as time since the 2-

week measurement, so the regression coefficient for variable treatment estimates

the treatment effect (mean difference in FEV1) at 2weeks (the baseline of the post-

treatment groups) while the regression coefficient for variable weeks estimates the

mean increase in FEV1 per week in the control group (the group corresponding to

the baseline value of treatment). The regression coefficient for the interaction

parameter (variable treat.weeks) estimates the mean increase in the effect of

treatment per week: thus the effect of treatment is estimated to increase by

0.0127 litres per week, between week 2 and week 12. As might be expected, there

is a strong association between baseline FEV1 and post-treatment FEV1 (regres-

sion coefficient 0.7562 for variable fevbase), and controlling for baseline FEV1

has substantially reduced the estimated between-patient standard deviation

(�u ¼ 0:4834, compared to 0.6828 in the model including only the effect of

treatment). The intraclass correlation coefficient from this model is 0.796.

31.5 GENERALIZED ESTIMATING EQUATIONS (GEE)

Estimation of generalized linear models incorporating random effects is difficult

mathematically if the outcome is non-normal, except in the case of random-effects

Poisson models which exploit a mathematical ‘trick’ where assuming a particular

distribution for the random effect leads to a well-defined ‘composite’ distribution

for the outcome (the negative binomial distribution). For other models, in par-

ticular logistic regression models, no such trick is available and estimation of

random-effects models has until recently been either unavailable or difficult and

time consuming.

Generalized estimating equations (GEE) were introduced by Liang and Zeger

(1986) as a means of analysing longitudinal, non-normal data without resorting to

fully specified random-effects models. They combine two approaches:

1 Quasi-likelihood estimation, where we specify only the mean and variance of the

outcome, rather than a full probability model for its distribution. In GEE, the

quasi-likelihood approach is generalized to allow a choice of structures for the

correlation of outcomes within clusters; this is called a ‘working’ correlation

structure. However, it is important to understand that these correlation struc-

tures need not (and often do not) correspond to a correlation structure derived

from a full, random effects, probability model for the data.

2 Robust standard errors are used to take account of the clustering, and the fact

that the parameter estimates are not based on a full probability model.

Note that for normally distributed outcomes, parameter estimates from GEE are

identical to those from standard random-effects models.

The most common choice of correlation structure, and the only one that we

shall consider here, is the ‘exchangeable’ correlation structure in which the correl-
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ation between a pair of observations in the same cluster is assumed to be the same

for all pairs in each cluster.

Example 31.3

The data set we shall use to compare GEE with other approaches to the analysis of

clustered data comes from a study of the impact of HIV on the infectiousness of

patients with pulmonary TB (Elliott et al., AIDS 1993, 7:981–987). This study was

based on 70 pulmonary TB patients in Zambia, 42 of whom were infected with

HIV and 28 of whom were uninfected. These patients are referred to as index

cases. The aim of the study was to determine whether HIV-infected index cases

were more or less likely than HIV-negative index cases to transmitM. tuberculosis

infection to their household contacts.

Three hundred and seven household contacts were traced, of whom 181 were

contacts of HIV-infected index cases. The mean number of contacts per HIV-

infected index case was 4.3 (range 1 to 13), while the mean number of contacts per

HIV-uninfected case was 4.5 (range 1 to 11). All these contacts underwent a

Mantoux skin test for tuberculosis infection. An induration (skin reaction) of

diameter � 5mm was considered to be a positive indication that the contact had

tuberculosis infection. Information on a number of household level variables (e.g.

HIV status of TB patient, crowding) and on a number of individual contact level

variables (e.g. age of contact, degree of intimacy of contact) was recorded. If some

index cases are more infectious than others, or household members share previous

exposures to TB, then the outcome (result of the Mantoux test in household

contacts) will be clustered within households.

Table 31.10 shows that, overall, 184=307 (59.9%) of household contacts had

positive Mantoux tests, suggesting that they had tuberculosis infection. This

proportion appeared lower among the contacts of HIV-infected index cases

(51.9%) than among contacts of HIV-uninfected index cases (71.4%).

Table 31.11(a) shows the results from a standard logistic regression model,

ignoring any clustering within households. The odds ratio comparing

contacts of HIV-infected index cases with contacts of HIV-uninfected index

cases was 0.432 (95% CI 0.266 to 0.701). However, as explained earlier in the

chapter, ignoring within-household clustering may mean that this confidence

interval is too narrow.

Table 31.10 2� 2 table showing the association between Mantoux test status in

household contacts of tuberculosis patients and the HIV status of the index case.

HIV status of index case

Mantoux test status Positive Negative Total

Positive 94 (51.9%) 90 (71.4%) 184 (59.9%)

Negative 87 (48.1%) 36 (28.6%) 123 (40.1%)

Total 181 126 307
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Table 31.11 Regression outputs (odds ratio scale) for the association between Mantoux

test positivity in household contacts of tuberculosis patients, and the HIV-infection status of

the index case.

(a) Standard logistic regression

Odds ratio z P > jzj 95% CI

HIV-infected 0.432 �3.40 0.001 0.266 to 0.701

(b) Logistic regression, using robust standard errors to allow for within-household clustering

Odds ratio z P > jzj 95% CI

HIV-infected 0.432 �2.52 0.012 0.225 to 0.829

(c) Generalized estimating equations (GEE) with robust standard errors to allow for within-

household clustering

Odds ratio z P > jzj 95% CI

HIV-infected 0.380 �2.96 0.003 0.200 to 0.721

We will now compare these results with those in parts (b) and (c) of Table 31.11

from twodifferentmethods that allow for clustering. First, part (b) shows the results

specifying robust standard errors in the logistic regressionmodel to allow forwithin-

household clustering (see Section 31.3). This approach does not change the esti-

mated odds ratio. However, the 95% confidence interval is now wider, and the P-

value has increased to 0.012 from 0.001 in the standard logistic regression model.

Part (c) of Table 31.11 shows results from a GEE analysis assuming an ‘ex-

changeable’ correlation structure. As well as correcting the standard errors, confi-

dence intervals and P-values to account for the clustering, the odds ratio has

reduced from 0.43 to 0.38 after taking account of within-household clustering.

This is because the GEE analysis gives relatively less weight to contacts in large

households. Box 31.1 summarizes theoretical issues in the GEE approach to the

analysis of clustered data.

31.6 SUMMARY OF APPROACHES TO THE ANALYSIS OF CLUSTERED

DATA

1 If data are clustered, it is essential that the clustering should be allowed for in

the analyses. In particular, failure to allow for clustering may mean that

standard errors of parameter estimates are too small, so that confidence inter-

vals are too narrow and P-values are too small.

2 It is always valid to derive summary measures for each cluster, then analyse

these using standard methods. However, analyses based on such summary

statistics cannot take account of exposure variables that vary between individ-

uals in the same cluster.
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BOX 31.1 THEORETICAL ISSUES IN USING GEE

� We do not need to assume that the correlation matrix in GEE is correct;

hence it is known as a ‘working’ correlation matrix. The parameter

estimates and standard errors will still be correct (‘consistent’) provided

that the sample size is large enough.

� However, the choice of correlation matrix will affect the parameter esti-

mates. If we assume independence, that is no clustering within groups,

then the parameter estimates will be the same as for the corresponding

generalized linear model. To derive parameter estimates adjusted as far as

possible for the clustering, we need to specify the most realistic correlation

matrix possible.

� The GEE approach treats the clustering as a nuisance of no intrinsic

interest, but provides parameter estimates and standard errors corrected

for the clustering. Unlike random effects models, GEE estimates are not

based on a fully specified probability model for the data (except for

models with an identity link function: see Section 29.2). GEE models are

also known as ‘population-averaged’ or ‘marginal’ models because the

parameter estimates refer to average effects for the population rather

than to the effects for a particular individual within the population.

� The GEE approach allows flexibility in modelling correlations, but little

flexibility in modelling variances. This can have serious limitations for

modelling of grouped counts or proportions, such as in the compoundX

example above, or in a study of malaria risk if the outcome was the

proportion of mosquitoes landing on a bednet that were found to be

infective.

� Assumptions about the processes leading to missing data are stronger for

GEE than for random-effects models. For example, consider a longitu-

dinal study in which repeated examinations are scheduled every three

months, but in which some individuals do not attend some examinations.

In GEE, it is assumed that data from these examinations are missing

completely at random, which means that the probability that an observa-

tion is missing is independent of all other observations. For random-

effects models the assumption is that data are missing at random, which

means that the probability that an observation is missing is independent of

its true value at that time, but may depend on values at other times, or on

the values of other variables in the dataset.

31.6 Summary of approaches to the analysis of clustered data 369



3 The likely effect of the clustering on standard errors may be assessed by

specifying robust standard errors that allow for the clustering. Parameter

estimates will not be affected. For such robust standard errors to be reliable

we need a reasonable number of clusters (at least 30). Wald tests, rather than

likelihood ratio tests, must be used.

4 Random-effects (multilevel) models allow for the presence of clustering by

modifying the linear predictor by a constant amount uj in cluster j. The random

effects {uj} are assumed to vary randomly between clusters. Random-effects

models work well for normally distributed outcomes and Poisson regression,

but estimation of random-effects logistic models is difficult and computation-

ally demanding.

5 Generalized estimating equations (GEE) modify both parameter estimates and

standard errors to allow for the clustering. Again, there should be a reasonable

number of clusters. The GEE approach is particularly useful in logistic regres-

sion analyses and when the focus of interest is on the estimated exposure effect

and where the clustering is of no intrinsic interest.

In this chapter we have described only the simplest types of model for the analysis

of clustered data. In particular the random effects models presented in Section

31.4 include a single random effect to allow for the clustering. Such models have a

wealth of possible extensions: for example, we may investigate whether exposure

effects, as well as cluster means, vary randomly between clusters. For more details

on the analysis of clustered data and random-effects (multilevel) models, see

Goldstein (1995), Donner and Klar (2000) or Bryk and Raudenbush (2001).
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32.1 INTRODUCTION

There has been an explosion in research evidence in past decades; over half a

million articles are published annually in the biomedical literature. It is common

for important issues in medical research to be addressed in several studies. Indeed,

we might be reluctant to introduce a new treatment based on the result of one trial

alone. This chapter focuses on how the evidence relating to a particular research

question can be summarized in order to make it accessible to medical practitioners

and inform the practice of evidence-based medicine. In particular we discuss:

� systematic reviews of the medical literature;

� the statistical methods which are used to combine effect estimates from different

studies (meta-analysis);

� sources of bias in meta-analysis and how these may be detected.

Because systematic reviews and meta-analyses of medical research are mainly

(though not exclusively) used in combining evidence from randomized trials, we

will refer throughout to treatment effects, rather than to exposure effects.

More detail on all the statistical methods presented in this chapter can be found

in Systematic Reviews in Health Care: Meta-Analysis in Context edited by Egger,

Davey Smith and Altman (2001); see www.systematicreviews.com.
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32.2 SYSTEMATIC REVIEWS

The need to summarize evidence systematically was illustrated by Antman et al.

(1992), who compared accumulating data from randomized controlled trials

of treatments for myocardial infarction (heart attack) with the recommendations

of clinical experts writing review articles and textbook chapters. By the mid-1970s,

based on a meta-analysis of around ten trials in more than 2500 patients, there was

good evidence of a protective effect of thrombolytic therapy after myocardial

infarction against subsequent mortality. However, trials continued to be per-

formed for the next 15 years (the cumulative total patients had reached more

than 48 000 by 1990). It was not until the late 1980s that the majority of textbooks

and review articles recommended the routine use of thrombolytic therapy after

myocardial infarction.

It is now recognized that a conventional ‘narrative’ literature review – a ‘sum-

mary of the information available to the author from the point of view of the

author’ – can be very misleading as a basis from which to draw conclusions on the

overall evidence on a particular subject. Reliable reviews must be systematic if bias

in the interpretation of findings is to be avoided.

Cook et al. (1995) defined a systematic review of the literature as ‘the application

of scientific strategies that limit bias by the systematic assembly, critical appraisal

and synthesis of all relevant studies on a specific topic’. The main feature which

distinguishes systematic from narrative reviews is that they have a methods section

which clearly states the question being addressed, the subgroups of interest and

the methods and criteria employed for identifying and selecting relevant studies and

extracting and analysing information. Systematic reviews are a substantial under-

taking and a team with expertise in both the content area and review methodology

is usually needed.

Guidelines on the conduct of systematic reviews may be found in Egger, Davey

Smith and Altman (2001) and in the Cochrane Collaboration handbook. The

QUOROM statement (Moher et al. 1999) suggests guidelines for the reporting

of systematic reviews.

32.3 THE COCHRANE AND CAMPBELL COLLABORATIONS

We have seen that:

� medical practice needs to be based on the results of systematic reviews, rather

than (non-systematic) ‘expert reviews’ of the literature;

� to perform a systematic review is a substantial undertaking

The Cochrane Collaboration (www.cochrane.org), which started in 1993, is an

attempt to address these issues. It aims to produce systematic, periodically up-

dated reviews of medical and public health interventions. Cochrane reviews are

available in electronic form (via CD-ROM and on the internet), which means that

reviews can be updated as new evidence becomes available or if mistakes have

been identified. Already, more than 1000 systematic reviews are available as

AQ1
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part of the Cochrane Collaboration, and some 150 000 studies are indexed in the

database of randomized controlled trials.

The Campbell Collaboration (www.campbellcollaboration.org) is a similar ini-

tiative for systematic reviews of social and educational policies and practice, some

of which include an impact on health-related outcomes.

32.4 META-ANALYSIS

The statistical methods for combining the results of a number of studies are

known as meta-analysis. It should be emphasized that not all systematic reviews

will contain a meta-analysis; this will depend on whether the systematic review has

located studies that are sufficiently similar to make it reasonable to consider

combining their results. The increase in interest in meta-analysis is illustrated by

the fact that while in 1987 there were five MEDLINE citations using the term

META-ANALYSIS, this had increased to 380 by 1991, and 580 by 2001.

We will illustrate methods for meta-analysis using studies with a binary out-

come and measuring treatment effects using odds ratios. Corresponding methods

exist for other treatment effect estimates such as risk ratios or risk differences, and

for continuous outcome measures.

Example 32.1 Effect of diuretics on pre-eclampsia in pregnancy

In an early meta-analysis, Collins et al. (1985) examined the results of randomized

controlled trials of diuretics in pregnancy. After excluding trials in which they

considered that there was a possibility of severe bias, they found nine trials in

which the effect of diuretics on pre-eclampsia (a rapid increase in blood pressure

or proteinuria which may have severe sequelae) was reported. Table 32.1 summar-

izes the results of these trials.

Table 32.1 Results of nine randomized controlled trials of diuretics in pregnancy.

Pre-eclampsia=total

First author Treated patients Control patients Odds ratio (95% CI)

Weseley 14=131 14=136 1.043 (0.477, 2.28)

Flowers 21=385 17=134 0.397 (0.203, 0.778)

Menzies 14=57 24=48 0.326 (0.142, 0.744)

Fallis 6=38 18=40 0.229 (0.078, 0.669)

Cuadros 12=1011 35=760 0.249 (0.128, 0.483)

Landesman 138=1370 175=1336 0.743 (0.586, 0.942)

Kraus 15=506 20=524 0.770 (0.390, 1.52)

Tervila 6=108 2=103 2.971 (0.586, 15.1)

Campbell 65=153 40=102 1.145 (0.687, 1.91)

In order tomake an overall assessment of the effect of diuretics on pre-eclampsia,

we would like to combine the results from these nine studies into a single summary

estimate of the effect, together with a confidence interval. In doing this:

AQ2
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� Treated individuals should only be compared with control individuals from the

same study, since the characteristics of patients in the different studies may

differ in important respects, for example, because of different entry criteria, or

because they come from different study populations which may have different

underlying risks of pre-eclampsia. Thus simply combining patients across the

studies would not be an appropriate way to estimate the overall treatment

effect.

� Note that even if all the studies are broadly comparable, sampling error will

inevitably mean that the observed treatment effects will vary. In this example

the estimated odds ratios vary from 0.229 (Fallis) to 2.971 (Tervila).

� The relative sizes of the studies should be taken into account. Note that the

most extreme results (odds ratios furthest away from 1) come from the smaller

studies.

In the next two sections we describe fixed-effect and random-effects approaches to

meta-analysis. A fixed-effect meta-analysis can be conducted if it is reasonable to

assume that the underlying treatment effect is the same in all the studies, and that

the observed variation is due entirely to sampling variation. The fixed-effect

assumption can be examined using a test of heterogeneity between studies, as

described at the end of Section 32.5. A random-effects meta-analysis aims to

allow for such heterogeneity, and is described in Section 32.6.

32.5 FIXED-EFFECT META-ANALYSIS

In a fixed-effect meta-analysis, we assume that the observed variation in treatment

effects in the different studies is due entirely to sampling variation, and that the

underlying treatment effect is the same in all the study populations. Table 32.2

shows the notation we will use for the results from study i (when we have a binary

outcome, as in Example 32.1). The estimate of the odds ratio for the treatment

effect in study i is

ORi ¼ d1i � h0i

d0i � h1i

In Example 32.1, we have nine such tables of the effects of treatment with diuretics

on pre-eclampsia, one from each of the nine trials, and nine odds ratios. The

Table 32.2 Notation for the 2� 2 table of results from study i.

Outcome

Experienced event:

D (Disease)

Did not experience event:

H (Healthy) Total

Group 1 (intervention) d1i h1i n1i
Group 0 (control) d0i h0i n0i

Total di hi ni
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summary estimate of the treatment effect is calculated as a weighted average (see

Section 18.3) of the log odds ratios from the separate trials:

log(ORF ) ¼ �[wi � log(ORi)]

�wi

The subscript F denotes the assumption that the effect of diuretics is the same, or

fixed, in each study. Note that individuals are only compared with other individ-

uals in the same study (via the study log odds ratio).

In the inverse variance method, the weight wi for study i equals the inverse

of the variance, vi, of the estimated log odds ratio in that study (see Section

16.7):

Inverse variance weights: wi ¼ 1=vi,

where vi ¼ 1=d1i þ 1=h1i þ 1=d0i þ 1=h0i

This choice of weights minimizes the standard error of the summary log odds

ratio, which is:

s:e: ( log(ORF )) ¼
1

�wi

r

This can be used to calculate confidence intervals, a z statistic and hence a P-value

for the summary log odds ratio. An alternative weighting scheme is to useMantel–

Haenszel weights to combine the odds ratios from the individual studies. These

are:

Mantel�Haenszel weights:wi ¼ d0ih1i=ni

Example 32.1 (continued)

Results from a fixed-effect meta-analysis of the data on the effect of diuretics in

pregnancy are shown in Table 32.3. This gives clear evidence that the odds of pre-

eclampsia were reduced in mothers treated with diuretics. As usual, the estimated

summary log odds ratio and its confidence interval have been converted to an

odds ratio, for ease of interpretation.
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Table 32.3 Results of a fixed-effect meta-analysis of

results from nine randomized controlled trials of

diuretics in pregnancy.

ORF z P-value 95% CI

0.672 �4:455 < 0:001 0.564 to 0.800

Note on sparse data

If any of the cells in the 2� 2 table for one (or more) of the contributing studies

contains zero, then the formulae for the log ORi and corresponding variance, vi, in

that table break down. When this happens, it is conventional to add 0.5 to all cells

in the table, and it may be preferable to use Mantel–Haenszel weights. In other

circumstances the inverse-variance andMantel–Haenszel methods will give similar

results.

Forest plots

Results of meta-analyses are displayed in a standard way known as a ‘forest plot’,

and such a plot of the diuretics data is shown in Figure 32.1. The horizontal lines

correspond to the 95% confidence intervals for each study, with the corresponding

box area drawn proportional to the weight for that individual study in the meta-

analysis. Hence the wider is the confidence interval the smaller is the box area. The

Fig. 32.1 Forest plot of the results of a fixed-effect meta-analysis of nine studies of the effect of diuretics in

pregnancy.
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diamond (and broken vertical line) represents the summary estimate, and the

confidence interval for the summary estimate corresponds to the width of the

diamond. The unbroken vertical line is at the null value (1) of the odds ratio, and

is equivalent to no treatment effect. Note that the horizontal axis is plotted on a

log scale, so that confidence intervals are symmetrical and an odds ratio of (e.g.) 2

is the same distance from 1 as 1=2 ¼ 0:5.

The exact origin of the name ‘forest plot’ is not clear. One possible derivation is

that it allows one to avoid the pitfall of ‘not being able to see the wood for the

trees’.

Testing for heterogeneity between studies

The fixed-effect estimate is based on the assumption that the true effect does not

differ between studies. This assumption should be checked. We can do this using a

x2 test of heterogeneity, similar to that described for Mantel–Haenszel methods in

Section 18.5. The greater the average distance between the log odds ratios esti-

mated in the individual studies and the summary log odds ratio, the more evidence

against the null hypothesis that the true log odds ratios are the same. The x2 test of

heterogeneity (often denoted by Q) is based on a weighted sum of the squares of

these differences:

�2 ¼ Q ¼ �wi [log(ORi)� log(ORF )]
2

d:f : ¼ number of studies� 1

Example 32.1 (continued)

For the data on the effect of diuretics in pregnancy,

x2 ¼ 27:265, d:f : ¼ 9�1 ¼ 8, P ¼ 0:001

There is therefore strong evidence (confirming the impression in the graph) that

the effect of diuretics differs between studies.

32.6 RANDOM-EFFECTS META-ANALYSIS

If there is evidence of heterogeneity between studies, how should we proceed?

Although it can be argued that it is inappropriate to calculate a summary measure

(this is discussed further below), it is also possible to allow for the heterogeneity by

incorporating a model for the heterogeneity between studies into the meta-analy-

sis. This approach is called random-effects meta-analysis.
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In random-effects meta-analysis, we assume that the ‘true’ log odds ratio in each

study comes from a normal distribution:

log(ORi) � N(log (ORR), �2)

whose mean equals the true ‘overall’ treatment effect and whose variance is

usually denoted by �2 (� is the Greek letter tau). We estimate this between-study

variance, �2, from the observed data (see below) and use this to modify the weights

used to calculate the random-effects summary estimate:

log(ORR) ¼
�[w


i � log(ORi)]

�w

i

w

i ¼

1

vi þ �2
, where vi ¼ 1=d1i þ 1=h1i þ 1=d0i þ 1=h0i

The standard error of the random-effects summary estimate is calculated from the

inverse of the sum of the adjusted weights:

s:e: ( log(ORR)) ¼
1

�w

i

r

Estimating the between-study variance

The most commonly used formula for estimating the between-study variance, �2,

from the observed data was put forward by DerSimonian and Laird (1986). It is

based on the value of the x2 test of heterogeneity, represented byQ, the unadjusted

weights, wi, and the number of contributing studies, k:

�2 ¼ max 0,
Q� (k� 1)

W

� �� �
,

where Q ¼ �2 ¼ �wi (log(ORi)� log(ORF ))
2

and W ¼ �wi � �w2
i

�wi

� �

The mathematical details are included here for completeness. In practice the

computer would calculate this as part of the random-effects meta-analysis routine.

378 Chapter 32: Systematic reviews and meta-analysis



Table 32.4 Comparison of fixed-effects and random-effects meta-analysis results of

nine randomized controlled trials of the impact of diuretics in pregnancy on pre-

eclampsia.

Method Summary OR 95% CI z P-value

Fixed-effects 0.672 0.564 to 0.800 �4.455 <0.001

Random-effects 0.596 0.400 to 0.889 �2.537 0.011

Example 32.1 (continued)

For the data on the effect of diuretics in pregnancy, the estimate of the between-

study variance is �2 ¼ 0:230, and the summary OR is ORR ¼ 0:596, somewhat

smaller than the fixed-effect estimate. The confidence interval is correspondingly

much wider, as can be seen in Table 32.4, which presents the results from both the

fixed-effect and random-effects meta-analyses.

Comparison of fixed-effect and random-effects meta-analysis

Because of the addition of �2 (the estimated between-study variance) to their

denominators, random-effects weights are:

1 smaller, and

2 much more similar to each other

than their fixed-effect counterparts. Table 32.5 illustrates this for the diuretics

trials of Example 32.1. This results in:

3 smaller studies being given greater relative weight,

4 a wider confidence interval for the summary estimate, and

5 a larger P-value

compared to the corresponding fixed-effect meta-analysis (see Table 32.4). Thus a

random-effects meta-analysis will in general be more conservative than its fixed-

effect counterpart. This reflects the greater uncertainty inherent in the random-

effects approach, because it is assumed that, in addition to sampling variation, the

true effect varies between studies.

Table 32.5 Comparison of the weights used in the fixed-effect and random-effects meta-

analyses of the diuretics trial data, shown in Table 32.1.

Study Odds ratio (95% CI) Fixed-effects weight Random-effects weight

Weseley 1.04 (0.48 to 2.28) 6.27 2.57

Flowers 0.40 (0.20 to 0.78) 8.49 2.88

Menzies 0.33 (0.14 to 0.74) 5.62 2.45

Fallis 0.23 (0.08 to 0.67) 3.35 1.89

Cuadros 0.25 (0.13 to 0.48) 8.75 2.91

Landesman 0.74 (0.59 to 0.94) 68.34 4.09

Kraus 0.77 (0.39 to 1.52) 8.29 2.85

Tervila 2.97 (0.59 to 15.1) 1.46 1.09

Campbell 1.14 (0.69 to 1.91) 14.73 3.36
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Note that the greater the estimate of �2, the greater the difference between the

fixed-effect and random-effects weights. If �2 (the between-study variance) is

estimated to be zero, then the fixed-effect and random-effects estimates will be

identical.

Interpretation of the summary estimate from a random-effects meta-analysis

The interpretation of the random-effects summary estimate is in fact very different

to that of the fixed-effect one. In fixed-effectmeta-analysis it is assumed that the true

effect is the same in each study and that the only reason for variation in the estimates

between studies is sampling error. In other words, it is assumed that the treatment

effect is universal, and the meta-analysis provides the best available estimate of it.

In random-effects meta-analysis, the estimate is of a mean effect about which it

is assumed that the true study effects vary. There is disagreement over whether it is

appropriate to use random-effects models to combine study estimates in the

presence of heterogeneity, and whether the resulting summary estimate is mean-

ingful. This will be illustrated in Example 32.2.

Example 32.2 BCG vaccination

It has been recognized for many years that the protection given by BCG vaccin-

ation against tuberculosis varies between settings. For example, the risk ratio

comparing vaccinated with unvaccinated individuals in the MRC trial in the

UK (conducted during the 1960s and 1970s) was 0.24 (95% CI 0.18 to 0.31),

while in the very large trial in Madras, south India, there appeared to be no

protection (risk ratio 1.01, 95% CI 0.89 to 1.14).

In a meta-analysis published in 1994, Colditz et al. used all trials in which

random or systematic allocation was used to decide vaccine or placebo, and in

which both groups had equivalent surveillance procedures and similar lengths of

follow-up. Using a random-effects meta-analysis (having noted the highly signifi-

cant heterogeneity between trials) they concluded that the risk ratio was 0.49 (95%

CI 0.34 to 0.70).

While Colditz et al. concluded that ‘the results of this meta-analysis lend added

weight and confidence to arguments favouring the use of BCG vaccine’, Fine

(1995) reached different conclusions. Noting, like Colditz et al., the strong associ-

ation between latitude and estimated effect of the vaccine (BCG appeared to work

better further away from the equator) he commented that ‘it is invalid to combine

existing data into a single overall estimate’ and further that ‘most of the studies of

BCG have been at relatively high latitudes whereas their current use is mainly at

lower latitudes’. Thus it can be argued that random-effects meta-analysis is simply

a means of combining ‘apples and pears’: forming an average of estimates of

quantities whose values we know to be different from each other.

We also saw earlier that in a random-effects meta-analysis studies are weighted

more equally than in a fixed-effect meta-analysis. If a random-effects summary
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estimate differs from the fixed-effect estimate, this is a sign that the average

estimate from the smaller studies differs from the average of the large ones.

Given that small studies are more subject to publication bias than large ones

(see Section 32.7), this is clearly a disadvantage of random-effects meta-analyses.

While explanations for heterogeneity may provide useful insights into differences

between studies, and may have implications for clinical practice, we should be very

cautious about an approach that adjusts for heterogeneity without explaining it.

Meta-regression

While there is disagreement over whether it is appropriate to use random-effects

models to combine study estimates in the presence of heterogeneity, it is clear that

the investigation of sources of heterogeneity (such as study latitude in the example

above) may yield important insights. In the case of BCG vaccination, Fine

discusses how the association with latitude may be because of differential exposure

to environmental mycobacteria in different populations, which may in turn yield

insights into mechanisms of immunity to mycobacterial diseases.

Meta-regression can be used to examine associations between study character-

istics and treatment effects. In this approach, we postulate that the treatment

effect (e.g. log odds ratio) is related in a linear manner to one or more study

covariates.

Then, as with random-effects meta-analysis, we incorporate an additional vari-

ance component �2 that accounts for unexplained heterogeneity between studies.

The meta-regression procedure iterates between (i) estimating �2, and (ii) using

this estimate in a weighted regression to estimate the covariate effects. The

estimated covariate effects lead to a new estimate of �2, and so on. The process

stops when consecutive steps in the iteration yield almost identical values for �2

and for the covariate effects; the model is then said to have converged.

32.7 BIAS IN META-ANALYSIS

The emphasis on the importance of sound methodology for systematic reviews

arises from the observation that severe bias may result if this methodology is not

applied. Summarizing the results of five biased trials will give a precise but biased

result!

Causes of bias: poor trial quality

Empirical evidence that methodological quality of studies was associated with

estimates of treatment effect in clinical trials was first provided in an important

study by Schulz et al. (1995), who assessed the methodological quality of 250

controlled trials from 33 meta-analyses of treatments in the area of pregnancy and

childbirth. They found that trials in which treatment allocation was inadequately

concealed (see Chapter 34) had odds ratios which were exaggerated (i.e. further
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away from 1) by 41% compared to trials which reported ‘adequate concealment’.

Trials that were not double-blind yielded 17% larger estimates of effect.

An important consequence of the recognition that the quality of a trial may

affect its results was to encourage improved standards of conduct and reporting of

randomized trials. In particular the CONSORT statement (see Moher, Schulz and

Altman (2001), www.consort-statement.org and Chapter 34), which was published

in 1996 and updated in 2001, aims to standardize the reporting of trials in medical

journals.

Causes of bias: publication bias

In general, a study showing a beneficial effect of a new treatment is more likely to

be considered worthy of publication than one showing no effect. There is a

considerable bias that operates at every stage of the process, with negative trials

considered to contribute less to scientific knowledge than positive ones:

� those who conducted the study are more likely to submit the results to a peer-

reviewed journal;

� editors of journals are more likely to consider the study potentially worth

publishing and send it for peer review;

� referees are more likely to deem the study suitable for publication.

This situation has been accentuated by two factors: first that studies have often

been too small to detect a beneficial effect even if one exists (see Chapter 35) and

second that there has been too much emphasis on ‘significant’ results (i.e. P < 0:05

for the effect of interest).

A proposed solution to the problem of publication bias is to establish registers

of all trials in a particular area, from when they are funded or established. It has

also been proposed that journals consider studies for publication ‘blind’ of the

actual results (i.e. based only on the literature review and methods). It is also clear

that the active discouragement of studies that do not have power to detect a

clinically important effect would alleviate the problem. Publication bias is a lesser

problem for larger studies, for which there tends to be general agreement that the

results are of interest, whatever they are.

Funnel plots to examine bias in meta-analysis

The existence of publication bias may be examined graphically by the use of

‘funnel plots’. These are simple scatter plots of the treatment effects estimated

from individual studies on the horizontal axis and the standard error of the

treatment effect (reflecting the study size) on the vertical axis. The name ‘funnel

plot’ is based on the fact that the precision in the estimation of the underlying

treatment effect will increase as the sample size of component studies increases.

Effect estimates from small studies will therefore scatter more widely at the

bottom of the graph, with the spread narrowing among larger studies. In the

absence of bias the plot will resemble a symmetrical inverted funnel, as shown in

panel (a) of Figure 32.2.
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Fig. 32.2 Hypothetical funnel plots: (a) symmetrical plot in the absence of bias (open circles indicate

smaller studies showing no beneficial effects); (b) asymmetrical plot in the presence of publication bias

(smaller studies showing no beneficial effects are missing); (c) asymmetrical plot in the presence of bias due

to low methodological quality of smaller studies (open circles indicate small studies of inadequate quality

whose results are biased towards larger beneficial effects).
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Relative measures of treatment effect (risk ratios or odds ratios) are plotted on a

logarithmic scale. This is important to ensure that effects of the same magnitude

but opposite directions, for example risk ratios of 0.5 and 2, are equidistant from

1 (corresponding to no effect). Treatment effects have generally been plotted

against sample sizes. However, the statistical power of a trial is determined both

by the total sample size and the number of participants developing the event of

interest. For example, a study with 100 000 patients and 10 events is less likely to

show a statistically significant effect of a treatment than a study with 1000 patients

and 100 events. The standard error of the effect estimate, rather than total

sample size, has therefore been increasingly used in funnel plots (Sterne and

Egger 2001).

If there is bias, for example because smaller studies showing no statistically

significant effects (open circles in the figure) remain unpublished, then such

publication bias will lead to an asymmetrical appearance of the funnel plot with

a gap in the right bottom side of the graph (panel (b) of Fig. 32.2). In this situation

the combined effect from meta-analysis will overestimate the treatment’s effect.

The more pronounced the asymmetry, the more likely it is that the amount of bias

will be substantial.

What factors can lead to asymmetry in funnel plots?

Publication bias has long been associated with funnel plot asymmetry, but it is

important to realise that publication bias is not the only cause of funnel plot

asymmetry. We have already seen that trials of lower quality may yield exagger-

ated estimates of treatment effects. Smaller studies are, on average, conducted and

analysed with less methodological rigour than larger studies, so that asymmetry

may also result from the over-estimation of treatment effects in smaller studies of

lower methodological quality (panel (c) of Fig. 32.2).

Funnel plot asymmetry may have causes other than bias. Heterogeneity be-

tween trials can also lead to funnel plot asymmetry if the true treatment effect is

larger (or smaller) in the smaller trials because these are conducted, for example,

among high-risk patients. Such trials will tend to be smaller, because of the

difficulty in recruiting such patients and because increased event rates mean that

smaller sample sizes are required to detect a given effect. In addition, in some large

trials, interventions may be implemented under routine conditions rather than in

trial conditions where it is possible to invest heavily in assuring all aspects are

perfect. This will result in relatively lower treatment effects. For example, an

asymmetrical funnel plot was found in a meta-analysis of trials examining the

effect of geriatric assessment programmes on mortality. An experienced consult-

ant geriatrician was more likely to be actively involved in the smaller trials and this

may explain the larger treatment effects observed in these trials.

Because publication bias is only one of the possible reasons for asymmetry, the

funnel plot should be seen more as a means of examining ‘small study effects’ (the

tendency for the smaller studies in a meta-analysis to show larger treatment
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effects). The presence of funnel plot asymmetry should lead to consideration of

possible explanations, and may bring into question the interpretation of the

overall estimate of treatment effect from a meta-analysis.

Statistical tests for funnel plot asymmetry

Symmetry or asymmetry is generally defined informally, through visual examin-

ation, but different observers may interpret funnel plots differently. More

formal statistical methods to examine associations between the studies’ effects

and their sizes have been proposed. Begg and Mazumdar (1994) proposed

an adjusted rank correlation test for publication bias which involves calculation

of the rank correlation between the treatment effect and its estimated standard

error (or, equivalently, variance) in each study. Egger et al. (1997a) proposed

a linear regression test in which the standardized treatment effect from each study,

that is the treatment effect divided by its standard error, is regressed against the

precision of the treatment effect. For binary outcomes, the regression equation is:

yi ¼ �0 þ �1xi, where

yi ¼ log(ORi)=s:e: [ log(ORi)] ¼ log(ORi)� wi
p

xi ¼ 1=s:e: [log(ORi)] ¼ wi
p

and evidence for bias is found if the intercept �0 differs from zero.

This test is equivalent to a regression of the log odds ratio against standard

error (Sterne et al. 2000). This can be seen by multiplying the regression equation

above by s:e: [ log (ORi)], which gives:

log(ORi) ¼ �0 � s:e: [log(ORi)]þ �1

where the regression accounts for between-subject heterogeneity by weighting

according to the inverse of the variance of log(ORi). The greater the association

between log(ORi) and s:e: [log(ORi)], measured by the size of the regression

coefficient �0, the greater the evidence for funnel plot asymmetry. The test is

therefore very closely related to a meta-regression of log(ORi) on s:e: [log(ORi)].

There is thus the potential to include s:e:[log(ORi] together with other study

characteristics (for example measures of study quality) in a multiple meta-regres-

sion to examine competing explanations for differences between studies.

The power and sensitivity of these tests is not well established. It appears that

the regression method is more powerful than the rank correlation method, but
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that power is low unless the amount of bias is substantial and the number of

studies in the meta-analysis exceeds ten (Sterne et al. 2000).

32.8 META-ANALYSIS OF OBSERVATIONAL STUDIES

Although the emphasis in this chapter has been on the meta-analysis of data from

randomized trials, there are many questions which can only be addressed in

observational studies. These include:

� studies of the aetiology of disease (for example, does passive smoking cause lung

cancer?);

� evaluations of the effectiveness of interventions that have already been intro-

duced, such as BCG vaccination;

� evaluation of the effectiveness of an intervention on rare adverse outcomes,

such as mortality, for which the sample size required for randomized controlled

trials might be prohibitive;

� evaluation of the effectiveness of interventions that need to be applied on a

widespread basis, such as a mass media campaign, and for which therefore it is

not possible to have control groups;

� evaluation of the effectiveness of interventions in populations other than those

in which they were first evaluated.

For this reason a substantial proportion of published meta-analyses are based on

observational studies rather than on randomized trials.

However, the issues involved in meta-analysis of observational studies are very

different, and more difficult, than for the meta-analysis of randomized trials. In

particular, the appropriate control of confounding factors is of fundamental

importance in the analysis and interpretation of observational studies while, in

contrast, appropriate randomization should mean that confounding is not a

problem in trials (providing that their size is large enough, see Chapters 34 and

35). Other types of bias, for example recall bias, may also be of greater concern in

observational studies than in randomized trials.

A striking example of the potential for meta-analyses of observational studies

to give misleading results was given by Egger et al. (1997b). They compared the

results of six observational cohort studies of the association between intake of

beta-carotene (a precursor of the antioxidant vitamin A) and cardiovascular

mortality, with those from four randomized trials in which participants random-

ized to beta-carotene supplements were compared with participants randomized

to placebo. As can be seen from Figure 32.3, the cohort studies indicated a strong

protective effect of beta-carotene while the randomized trials suggest a moderate

adverse effect of beta-carotene supplementation. An individual’s diet is strongly

associated with other characteristics associated with cardiovascular mortality (for

example physical activity and social class) and these results suggest that failure to

control for such factors, or other types of bias, led to the apparent protective effect

of beta-carotene in the observational studies.
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Fig. 32.3 Meta-analysis of the association between beta-carotene intake and cardiovascular mortality.

Results from observational studies indicate considerable benefit whereas the findings from randomized

controlled trials show an increase in the risk of death. We are grateful to Matthias Egger for permission to

reproduce the figure.

This suggests that the statistical combination of studies should not, in general,

be a prominent component of systematic reviews of observational studies, which

should focus instead on possible sources of heterogeneity between studies and the

reasons for these.

32.9 CONCLUSIONS

Systematic reviews and meta-analysis (the quantitative analysis of such reviews)

are now accepted as an important part of medical research. While the analytical

methods are relatively simple, there is still controversy over appropriate methods

of analysis. Systematic reviews are substantial undertakings, and those conducting

such reviews need to be aware of the potential biases which may affect their

conclusions. However, the explosion in medical research information and the

availability of reviews on-line mean that synthesis of research findings is likely

to be of ever increasing importance to the practice of medicine.
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33.1 INTRODUCTION: BAYESIAN INFERENCE

In this chapter we give a brief description of the Bayesian approach to statistical

inference, and compare it to the frequentist approach which has been used in the

rest of the book. The Bayesian approach is based on Bayes’ formula for relating

conditional probabilities (see Chapter 14):

prob (B given A) ¼ prob (A given B)� prob (B)

prob (A)

We have seen that a statistical model specifies how the probability distribution

of an outcome variable (the data) depends on model parameters. For example,

consider a trial of the effect of thrombolysis on the risk of death up to 1 year after

a myocardial infarction. The data are the number of patients and number of

deaths in each group, and the model parameters are the risk of death in the

control group, and the risk ratio comparing the risk of death in patients given

thrombolysis with the risk of death in the control group. In Chapter 28 we

explained that the model parameters are fitted using the maximum likelihood

approach. This is based on calculating the conditional probability of the observed

data given model parameters.

The Bayesian approach to statistical inference starts with a prior belief about the

likely values of the model parameters, and then uses the observed data to modify

these. We will denote this prior belief by prob (parameters). Bayes’ formula

provides the mechanism to update this belief in the light of the data:

prob (model parameters given data) ¼
prob (data given model parameters)

� prob (parameters)

prob (data)

The prior belief concerning the values of the parameters is often expressed in terms

of a probability distribution, such as a normal or binomial distribution, represent-
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ing a range of possible values, rather than as single values. This is called the prior

distribution. The probability distribution of the model parameters given the data is

known as the posterior distribution.

33.2 COMPARISON OF BAYESIAN AND FREQUENTIST STATISTICAL

INFERENCE

In this book we have concentrated on the frequentist approach to statistical

inference, in which we think of probability in terms of the proportion of times

that an event would occur in a large number of similar repeated trials. In frequen-

tist statistical inference, we think of model parameters (for instance the risk ratio

for the effect of thrombolysis on the risk of death following heart attack, com-

pared to placebo) as fixed. We use the data to make inferences about model

parameters, via parameter estimates, confidence intervals and P-values.

In the Bayesian approach our inferences are based on the posterior probability

distribution for themodel parameters. For example, wemight derive a 95% credible

interval, based on the posterior distribution, within which there is 95% probability

that the parameter lies. Box 33.1 compares the Bayesian and frequentist approaches

BOX 33.1 COMPARISON OF FREQUENTIST AND BAYESIAN APPROACHES TO

STATISTICAL INFERENCE

Frequentist statistics Bayesian statistics

We use the data to make infer-

ences about the true (but un-

known) population value of the

risk ratio.

We start with our prior opinion

about the risk ratio, expressed as a

probability distribution. We use the

data to modify that opinion (we der-

ive the posteriorprobability distribu-

tion for the risk ratio based on both

the data and the prior distribution).

The 95% confidence interval gives

us a range of values for the popu-

lation risk ratio that is consistent

with the data. 95% of the times we

derive such a range it will contain

the true (but unknown) popula-

tion value.

A 95% credible interval is one that

has a 95% chance of containing the

population risk ratio.

The P-value is the probability of

getting a risk ratio at least as far

from the null value of 1 as the one

found in our study.

The posterior distribution can be

used to derive direct probability

statements about the risk ratio, e.g.

the probability that the drug in-

creases the risk of death.
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to statistical inference. See also the book by Royall (1997), which describes and

compares different approaches to statistical inference.

If our prior opinion about the risk ratio is very vague (we consider a very wide

range of values to be equally likely) then the results of a frequentist analysis are

very similar to the results of a Bayesian analysis—both are based on the likelihood

for the data. This is because a vague prior distribution will have little influence on

the posterior probability, compared to the influence of the data:

� the 95% confidence interval is the same as the 95% credible interval, except that

the latter has the interpretation often incorrectly ascribed to a confidence

interval;

� the (1-sided) P-value is the same as the probability that the drug increases the

risk of death (assuming that we found a protective effect of the drug).

However, the two approaches can give very different results if our prior opinion is

not vague relative to the amount of information contained in the data. This issue is

at the heart of a long-standing argument between proponents of the two schools of

statistical inference. Bayesians may argue that it is appropriate to take external

information into account by quantifying this as prior belief. Frequentists, on the

other hand, may argue that our inferences should be made based only on the data.

Further, prior belief can be difficult to quantify. For example, consider the

hypothesis that a particular exposure is associated with the risk of a particular

cancer. In quantifying our prior belief, how much weight should be given to

evidence that there is a biologically plausible mechanism for the association,

compared to evidence that international differences in disease rates show some

association with differences in the level of the risk factor?

In some situations, Bayesian inference allows a more natural way to consider

consequences of the data than does frequentist reasoning. For example:

� in a clinical trial in which an interim analysis reveals that the estimated risk of

disease is identical in the treatment and control groups, Bayesian statistics could

be used to ask the question ‘What is the probability that there is a clinically

important effect of treatment, given the data currently accrued?’ This question

has no meaning in frequentist statistics, since the effect of treatment is treated as

a fixed but unknown quantity;

� in a trial whose aim is to examine whether a new treatment (B) is at least as

clinically effective as an existing treatment (A), it is perfectly meaningful, in a

Bayesian framework, to ask ‘What is the probability that drug B is at least as

good as drug A?’ In contrast, frequentist statistics tends to focus on testing the

evidence against the null hypothesis that the effect of drug B is the same as the

effect of drug A.

33.3 MARKOV CHAIN MONTE-CARLO (MCMC) METHODS

In recent years there has been a resurgence of interest in Bayesian statistics. This

has been based less on arguments about approaches to statistical inference than on

a powerful means of estimating parameters in complex statistical models based on
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the Bayesian approach. The idea is that if we know the values of all the parameters

except for one, then we can derive the conditional distribution of the unknown

parameter, conditional on the data and the other (known) parameter values. Such

a conditional distribution can be derived for each parameter, assuming that the

values of all the others are known.

TheMarkov Chain Monte-Carlo (MCMC) procedure is used to generate a value

for each parameter, by sampling randomly from its conditional distribution. This

then acts as the ‘known’ value for that parameter. This process is carried out

iteratively. A new parameter value is sampled from the distribution of each

parameter in turn, and is used to update the ‘known’ values for the conditional

distribution of the next parameter. The phrase ‘Markov Chain’ refers to the fact

that the procedure is based only on the last sampled values of each parameter,

while ‘Monte-Carlo’ refers to the random sampling of the parameter values.

After a suitable ‘burn in’ period (e.g. 10 000 iterations), the dependence of the

procedure on the initial chioce of the parameter values is lost. The parameter

values generated over the next (say) 10 000 iterations are then recorded. These

correspond to the posterior distribution of the parameters, based on the data and

the prior probabilities. The high speeds of modern desktop computers mean that

such computationally intensive procedures can be run in reasonable amounts of

time, although they are not as quick as standard (maximum-likelihood) methods.

MCMC methods can thus be used as an alternative to maximum-likelihood

estimation, for models such as random-effects logistic regression where maximum-

likelihood estimation is computationally difficult. This can be carried out using

specialised computer software such as BUGS (available at www.mrc-bsu.cam.

ac.uk=bugs), which stands for Bayesian inference Using Gibbs Sampling and

allows users to specify a wide range of statistical models which are then estimated

using MCMC. Note, however, that both model specification and use of the

MCMC estimation procedure currently require considerably more technical

knowledge than is needed to use a standard statistical software package.
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PART F

STUDY DESIGN, ANALYSIS AND
INTERPRETATION

Our aim in this final part of the book is to facilitate the overall planning and

conduct of an analysis, and to cover general issues in the interpretation of study

results. We start in Chapter 34 by explaining how to link the analysis to study

design. We include guides to aid the selection of appropriate statistical methods

for each of the main types of study, and draw attention to design features that

influence the approach to analysis.

In the next three chapters, we address three different issues related to interpret-

ation of statistical analyses. Chapter 35 tackles the calculation of sample size, and

explains its fundamental importance in the interpretation of a study’s results.

Chapter 36 covers the assessment and implications of measurement error and

misclassification in study outcomes and exposures. Chapter 37 outlines the differ-

ent measures that are used to assess the impact of an exposure or of a treatment on

the amount of disease in a population.

Finally, Chapter 38 recommends general strategies for statistical analysis.
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34.1 INTRODUCTION

The main focus of this book is on the statistical methods needed to analyse the

effect of an exposure (or treatment) on an outcome. In previous parts, we have

categorized these methods according to the types of outcome and exposure (or

treatment) variables under consideration. These are summarized in the inside

covers of the book. In this chapter, we now look more generally at how to link

the analysis to the study design. In particular, we:

� summarize the range of methods available for each of the following:

randomized controlled trials;

other designs to evaluate the impact of an intervention;

cross-sectional and longitudinal studies;

case–control studies;

� highlight the key elements of each design that determine the choice of statistical

method(s);

� discuss any specific issues that need to be considered in the interpretation of the

results;

� draw attention to design-specific considerations that need to be built into the

analysis plan, in addition to the general strategies for analysis outlined in

Chapter 38.

Detailed discussions of the design of different types of study are outside the scope

of this book, but are available in the following textbooks:

CHAPTER 34

Linking analysis to study design:
summary of methods

34.1 Introduction

34.2 Randomized controlled trials

Analysis plan

Participant flow

Analysis of baseline variables

Intention to treat analysis

Adjustment for baseline variables

Subgroup analyses

Crossover trials

Cluster randomized trials

Choosing the statistical method to use

34.3 Other designs to evaluate

interventions

34.4 Longitudinal and cross-sectional

studies

Choosing the statistical method to use

Types of sampling scheme and their

implications

34.5 Case–control studies

Analysis of unmatched case–control

studies

Analysis of matched case–control

studies

Interpretation of the odds ratio

estimated in a case–control study



Clinical trials: Friedman et al. (1998) and Pocock (1983)

Interventions in developing countries: Smith & Morrow (1996)

Cluster randomized trials: Donner & Klar (2000) and Ukoumunne et al. (1999)

Case–control studies: Breslow & Day (1980) and Schlesselman & Stolley (1982)

General epidemiology: Gordis (2000), Rothman (2002), Rothman & Greenland

(1998) and Szklo & Nieto (2000)

34.2 RANDOMIZED CONTROLLED TRIALS

Randomized controlled trials (RCTs) provide the best evidence on the effective-

ness of treatments and health care interventions. Their key elements are:

� The comparison of a group receiving the treatment (or intervention) under

evaluation, with a control group receiving either best practice, or an inactive

intervention.

� Use of a randomization scheme to ensure that no systematic differences, in either

known or unknown prognostic factors, arise during allocation between the

groups. This should ensure that estimated treatment effects are not biased by

confounding factors (see Chapter 18).

� Allocation concealment: successful implementation of a randomization scheme

depends on making sure that those responsible for recruiting and allocating

participants to the trial have no prior knowledge about which intervention they

will receive. This is called allocation concealment.

� Where possible, a double blind design, in which neither participants nor study

personnel know what treatment has been received until the ‘code is broken’

after the end of the trial. This is achieved by using a placebo, a preparation

indistinguishable in all respects to that given to the treatment group, except for

lacking the active component. If a double-blind design is not possible then

outcome assessment should be done by an investigator blind to the treatment

received.

� An intention to treat analysis in which the treatment and control groups are

analysed with respect to their random allocation, regardless of what happened

subsequently (see below).

It is crucial that RCTs are not only well designed but also well conducted and

analysed if the possibility of systematic errors is to be excluded. It is also essential

that they are reported in sufficient detail to enable readers to be able to assess the

quality of their conduct and the validity of their results. Unfortunately, essential

details are often lacking. Over the last decade concerted attempts to improve the

quality of reporting of randomized controlled trials resulted in the 1996

CONSORT statement (Begg et al., 1996), with a revised version in 2001 (Moher

et al., 2001). CONSORT stands for CONsolidated StandardsOf Reporting Trials.

The statement consists of a prototype flow diagram for summarizing the different

phases of the trial, with the numbers involved in each (Figure 34.1), and a checklist
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of items that it is essential for investigators to report (Table 34.1). Details of its

rationale and background together with a full description of each component can

be found on the website http:==www.consort-statement.org=.

Assessed for
eligibility (n = ...)

Excluded (n = ...)

Not meeting
inclusion criteria
(n = ...)

Refused to participate
(n = ...)

Other reasons (n = ...)

Randomized (n = ...)

Allocated to intervention
(n = ...)

Received allocated
intervention (n = ...)

Did not receive allocated
intervention
(give reasons) (n = ...)

Lost to follow-up
(give reasons) (n = ...)

Discontinued intervention
(give reasons) (n = ...)

Analysed (n = ...)

Excluded from analysis
(give reasons) (n = ...)

Allocated to intervention
(n = ...)

Received allocated
intervention (n = ...)

Did not receive allocated
intervention
(give reasons) (n = ...)

Lost to follow-up 
(give reasons) (n = ...)

Discontinued intervention
(give reasons) (n = ...)
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n
al

ys
is

Fo
llo

w
-u

p
A

llo
ca

ti
o

n
En

ro
lm

en
t

Fig. 34.1 Revised template of the CONSORT diagram showing the flow of participants through each stage

of a randomized trial, reprinted with permission of the CONSORT group.

Analysis plan

In this section we will focus in particular on the features of the CONSORT

statement pertinent to the analysis plan, key stages of which are outlined in

34.2 Randomized controlled trials 397



Table 34.1 The revised CONSORT statement for reporting randomized trials: checklist of items to include when

reporting a randomized trial, reprinted with permission of the CONSORT group.

Paper section and topic Itemno. Descriptor

TITLE AND ABSTRACT 1 How participants were allocated to interventions (e.g. ‘random allocation’,

‘randomized’, or ‘randomly assigned’)

INTRODUCTION

Background 2 Scientific background and explanation of rationale

METHODS

Participants 3 Eligibility criteria for participants and the settings and locations where the

data were collected

Interventions 4 Precise details of the interventions intended for each group and how and

when they were actually administered

Objectives 5 Specific objectives and hypotheses

Outcomes 6 Clearly defined primary and secondary outcome measures and, when

applicable, any methods used to enhance the quality of measurements

(e.g. multiple observations, training of assessors, etc.)

Sample size 7 How sample size was determined and, when applicable, explanation of any

interim analyses and stopping rules

Randomization:

Sequence generation 8 Method used to generate the random allocation sequence, including details

of any restriction (e.g. blocking, stratification)

Allocation concealment 9 Method used to implement the random allocation sequence (e.g. numbered

containers or central telephone), clarifying whether the sequence was

concealed until interventions were assigned

Implementation 10 Who generated the allocation sequence, who enrolled participants, and

who assigned participants to their groups

Blinding (masking) 11 Whether or not participants, those administering the interventions, and

those assessing the outcomes were blinded to group assignment.

When relevant, how the success of blinding was evaluated

Statistical methods 12 Statistical methods used to compare groups for primary outcome(s);

methods for additional analyses, such as subgroup analyses and

adjusted analyses

RESULTS

Participant flow 13 Flow of participants through each stage (a diagram is strongly

recommended). Specifically, for each group report the numbers of

participants randomly assigned, receiving intended treatment,

completing the study protocol, and analysed for the primary outcome.

Describe protocol deviations from study as planned, together with reasons

Recruitment 14 Dates defining the periods of recruitment and follow-up

Baseline data 15 Baseline demographic and clinical characteristics of each group

Numbers analysed 16 Number of participants (denominator) in each group included in each

analysis and whether the analysis was by ‘intention-to-treat’. State the

results in absolute numbers when feasible (e.g. 10=20, not 50%)

Outcomes and estimation 17 For each primary and secondary outcome, a summary of results for each

group, and the estimated effect size and its precision (e.g. 95%

confidence interval)

(continued)
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Table 34.1 (continued)

Paper section and topic Itemno. Descriptor

Ancillary analyses 18 Address multiplicity by reporting any other analyses performed, including

subgroup analyses and adjusted analyses, indicating those pre-specified

and those exploratory

Adverse events 19 All important adverse events or side effects in each intervention group

DISCUSSION

Interpretation 20 Interpretation of the results, taking into account study hypotheses, sources

of potential bias or imprecision and the dangers associated with

multiplicity of analyses and outcomes

Generalizability 21 Generalizability (external validity) of the trial findings

Overall evidence 22 General interpretation of the results in the context of current evidence

Table 34.2. Although CONSORT has been designed primarily for two-group

parallel designs, most of it is also relevant to a wider class of trial designs, such as

equivalence, factorial, cluster and crossover trials.Modifications to theCONSORT

checklist for reporting trials with these and other designs are in preparation.

Table 34.2 Outline of analysis plan for a randomized controlled trial.

1. Complete flow diagram showing number of participants involved at each phase of the trial

2. Summarize baseline characteristics of trial population

3. Compare treatment groups with respect to baseline variables – focus on subset of variables thought to be

associated with main outcome(s). Avoid formal tests of the null hypothesis of no between-group differences,

since the null hypothesis must be true if the randomization was done properly

4. Conduct simple analysis of main outcome(s) by intention to treat

(a) Present the estimated effect of treatment together with a CI and test of the null hypothesis of no treatment

effect

(b) Consider sensitivity analyses examining the possible effect of losses to follow-up, if these might affect the

treatment effect estimate

5. Repeat analysis including adjustment for baseline variables if appropriate

6. Carry out any subgroup analyses if there is an a priori justification

7. Analyse side effects and adverse outcomes

8. Analyse secondary outcomes

Participant flow

An important first stage of the analysis is to work out the flow of the number of

participants through the four main phases of the trial: enrolment, allocation to

intervention groups, follow-up and analysis, as shown in Figure 34.1. In particu-

lar, it is important to note the number excluded at any stage and the reasons for

their exclusion. This information is crucial for the following reasons:

� Substantial proportions lost at any stage have important implications for the

external validity of the study, since the resulting participants may no longer be

representative of those eligible for the intervention.
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� Any imbalance in losses between treatment groups has implications for the

internal validity of the study, since they may lead to non-random differences

between the treatment groups which could influence the outcome.

� Knowing the difference between the number allocated to receive an interven-

tion, and number who actually received it (and=or adequately adhered to it), is

important for the interpretation of the estimated effect, as explained below

under ‘intention to treat analysis’.

Analysis of baseline variables

‘Baseline’ information collected at enrolment is used in the analysis of a trial in the

following ways:

1 To describe the characteristics of the trial participants, which is essential for

assessing the generalizibility of the results.

2 To demonstrate that the randomization procedure has successfully led to com-

parability between trial groups.

3 To adjust treatment effects for variables strongly related to the outcome (see

below).

4 To carry out subgroup analysis (see below).

In their review, ‘Subgroup analysis and other (mis)uses of baseline data in clinical

trials’, Assmann et al. (2001) found that the first two objectives are often confused,

and that the approach to the second is often methodologically flawed. They

recommend that:

� A general and detailed description is given of the trial participants, but that the

analysis of comparability between groups should be restricted to a few variables

known to be strong predictors of the primary outcome(s).

� Significance tests for baseline differences are inappropriate, since any differ-

ences are either due to chance or to flawed randomization. In addition, a non-

significant imbalance of a strong predictor will have more effect on the results

than a significant imbalance on a factor unrelated to the outcome.

Intention to treat analysis

In an ‘intention to treat’ analysis, participants are analysed according to their

original group assignment, whether or not this is the intervention they actually

received, and whether or not they accepted and=or adhered to the intervention.

Alternatively, analysis can be based on actual intervention received, with criteria

for exclusion if inadequate adherence to the intervention was achieved. This

is sometimes known as a ‘per protocol’ analysis. The primary analysis of a

RCT should always be an intention to treat analysis, since it avoids the possibility

of any bias associated with loss, mis-allocation or non-adherence of participants.

For example, consider a placebo-controlled trial of a new drug with unpleasant

side-effects. If the sickest patients are unable to take the new drug, they

may withdraw from the assigned treatment. Such problems will not affect the
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placebo group, and therefore a per-protocol analysis would give a biased result by

comparing the less sick patients in the drug group with all patients in the placebo

group.

If there is a substantial difference between those allocated to receive an inter-

vention and those who actually receive it (and adequately adhere to it), then we

recommend that in addition analyses are carried out adjusting for actual treatment

received, and that the results are compared with the intention to treat analysis. A

valid method to correct for non-adherence to treatment in randomized trials was

developed by Robins and Tsiatis (1991), but has not been widely used in practice,

partly because it is conceptually difficult. However, software implementing the

method is now available (White et al. 2002). It is important to report the numbers

involved, and the reasons for the losses in order to assess to what extent the

intention to treat analysis may lead to an underestimate of the efficacy of the

intervention under ideal circumstances, and to what extent the per protocol

analysis may be biased.

Adjustment for baseline variables

The analysis of the main outcome(s) should always start with simple unadjusted

comparisons between treatment groups. For most randomized controlled trials,

this is all that should be done. We recommend adjustment for covariates measured

at baseline only in the following circumstances:

� Where there is clear a priori evidence about which baseline factors are likely

to be strongly related to the outcome. Even where strong predictors

exist, adjustment for them in the analysis is only necessary if the outcome is

numerical.

� In particular, where the outcome is numerical and where a baseline measure-

ment of it has been taken. An example would be a trial of an anti-hypertensive

drug, where blood pressure is measured at baseline and following treatment. In

this case the baseline measurement is likely to be strongly correlated with the

outcome, and including it as a covariate in the analysis improves the precision

of the treatment effect (see Section 29.8). Note that this is a better approach

than taking differences from the baseline as the outcome variable, since the

latter tends to overcorrect (see Snedecor & Cochran, 1989).

� Where the trial is sufficiently small that an imbalance sufficiently large to bias

the treatment effect is possible. (Such a situation may occur in cluster-random-

ized trials; see below.)

Note that:

� The decision concerning covariates should not be made on the basis of statistic-

ally significant differences between the treatment groups at baseline, although

this is often the practice (see above discussion on analysis of baseline variables).

� It is not necessary to adjust for centre in multi-centre studies, unless it is a strong

predictor of outcome and the proportion of patients in the treatment group

differs between centres.
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Subgroup analyses

In their review, Assmann et al. (2001) found that the use of subgroup analyses is

widespread in clinical trials, and often flawed. The choice of subgroups used is

often not justified, their analysis is often inadequate and their results are given

undue emphasis. They note that of all the problems that have been identified in the

conduct, analysis and reporting of clinical trials, subgroup analysis remains the

most over-used and over-interpreted.

� Subgroup analyses should only be conducted if there is a clear a priori reason to

expect the treatment effect to differ between different groups of patients, such as

between males and females, or between different age groups. Only a few

predefined subgroups should be considered and analysis restricted to the main

outcomes.

� They should include formal tests for interaction, as described in Section 29.5,

and should not be based on inspection of subgroup P-values. A particularly

common error is to assume that a small P-value in one subgroup, but not in

another, provides evidence that the treatment effect differs between the sub-

groups. If the subgroups are of different sizes then this situation may arise even

if the subgroup treatment effects are identical!

� In addition, in multi-centre trials it may be useful to present the results by centre

as well as overall, as a means of data quality and consistency checking between

centres. The results of such analyses may be presented in a forest plot (see

Chapter 32). However, this should not lead to undue emphasis being placed on

any apparent differences seen, unless these are supported by strong evidence

supporting their plausibility.

Crossover trials

Crossover trials are trials in which both treatments (or the active treatment and the

placebo control) are given to each patient, with the order of allocation decided at

random for each patient. They are suitable in situations such as trials of analgesics

for pain relief or therapies for asthma, where outcomes can be measured at the end

of successive time periods, and where there is unlikely to be a carry-over effect of

the first treatment into the period when the second treatment is being given. To

address this issue, such trials may incorporate a ‘washout’ period between the

periods when treatments under investigation are administered.

The main advantage of crossover trials is that by accounting for between-

patient variability in the outcome they may be more efficient than a corresponding

trial in which treatments are randomly allocated to different individuals (parallel

group trial). The analysis of such trials should take account of the design by using

methods for paired data. For numerical outcomes, the mean difference between

each patient’s outcomes on the first and second treatment should be analysed (see

Section 7.6), and the standard deviation of the mean differences should always be

reported, to facilitate meta-analyses of such trials, or of trials using both crossover
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and parallel group designs. For binary outcomes, methods for matched pairs

should be used (see Chapter 21).

Cluster randomized trials

The development, and the major use, of RCTs is in the evaluation of treatments or

medical interventions (such as vaccines) applied at the individual level. In recent

years, however, the use of RCTs has extended to the evaluation of health service

and public health interventions. This has led to the development of cluster ran-

domized trials, in which randomization is applied to clusters of people rather than

individuals, either because of the nature of the intervention, or for logistical

reasons. Some examples are:

� Evaluation of screening of hypertension among the elderly in the UK in which

the unit of randomization was the GP practice.

� Evaluation of the impact on HIV transmission in Tanzania of syndromic

management of sexually transmitted diseases, where the unit of randomization

was STD clinics and their catchment populations.

� Evaluation in Glasgow of the impact on adolescent sexual behaviour of a sex

education programme delivered through school, in which the schools were the

unit of randomization.

� Evaluation in Ghana of the impact of weekly vitamin A supplementation on

maternal mortality, where the unit of randomization is a cluster of about 120

women, the number that a fieldworker can visit in a week.

Three essential points to note are that:

1 Any clustering in the design must be taken into account in the analysis, as

described in Chapter 31.

2 Because the number of clusters is often relatively small, a cluster randomized

design may not exclude the possibility of imbalance in baseline characteristics

between the treatment and control groups and careful consideration should be

given to measurement of known prognostic factors at baseline and whether it is

necessary to adjust for their effects in the analysis.

3 A cluster randomized trial needs to include more individuals than the corres-

ponding individually randomized trial. Sample size calculations for cluster

randomized trials are described in Chapter 35.

Choosing the statistical method to use

Table 34.3 provides a guide to selecting the appropriate statistical method to use.

It shows how this depends on:

� the type of outcome;

� whether adjustment for baseline variables is needed;

� whether subgroup analyses are being conducted;

� and, in the case of survival outcomes, whether the proportional hazards as-

sumption is satisfied.
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In addition, it highlights two special cases that need to be considered:

� whether the data are clustered, either in group allocation (cluster randomized

trials), or in outcome measurement (repeated measures in longitudinal stu-

dies=multiple measures per subject), and

� crossover trials, where for each patient, treatment and control outcomes are

matched.

Details of the methods can be found in the relevant sections of Parts B–E.

34.3 OTHER DESIGNS TO EVALUATE INTERVENTIONS

As discussed in Section 32.8, while the large-scale, randomized, controlled trial is

the ‘gold standard’ for the evaluation of interventions, practical (and ethical)

considerations may preclude its use. In this section, we summarize the alternative

evaluation designs available, and the analysis choices involved (see Kirkwood et

al., 1997). Essentially, we have one or more of three basic comparisons at our

disposal in order to evaluate the impact of interventions. These are:

1 The pre-post comparison involves comparing rates of the outcome of interest in

several communities before the intervention is introduced (pre-intervention),

with rates in the same communities after they have received the intervention

(post-intervention). Such a comparison clearly requires the collection of base-

line data. The plausibility of any statement attributing an impact to the inter-

vention will be strengthened if it is demonstrated that both the prevalence of the

risk factor under intervention and the rate of adverse outcome have diminished

following the intervention. However, pre-post comparisons alone, without ad-

equate concurrent controls, rarely provide compelling evidence that an inter-

vention has successfully impacted on health, since changes in both the

prevalence of risk factors and outcome are frequently observed to occur over

time in the absence of any intervention. It is therefore difficult to conclude that

an observed change is due to the intervention and not due to an independent

secular trend. An exception to this occurs when assessing mediating factors in

programmes which seek to introduce into a community a new treatment or

promote a product or behaviour that did not previously exist. It will, however,

still be difficult to attribute any change in health status to the programme since

the improvement may still be part of a secular trend, rather than a direct

consequence of the intervention.

2 The intervention–control comparison following the introduction of the interven-

tion is of course at the heart of a randomized controlled trial, but this compari-

son may be applied in a wider context. Thus the intervention versus control

comparison may be randomized or non-randomized, matched or unmatched,

double-blind or open. When the comparison is double-blind and randomized,

with a large number of units, as is the case with an ideally designed randomized

controlled trial, the plausibility of attributing any difference in outcome ob-

served to the intervention is high. In the absence of double-blindness or

AQ1
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randomization on a reasonably large scale, inference concerning the impact of

the intervention becomes more problematic and it becomes essential to control

for potential confounding factors.

3 Adopters versus non-adopters comparison: this is carried out at the individual

level even if the intervention is delivered at the community level. Individuals

who adopt the intervention are compared with those who do not adopt

the intervention. Such a comparison is essentially a ‘risk factor’ study rather

than an ‘impact’ study in that it measures the benefit to an individual

of adopting the intervention rather than the public health impact of the

intervention in the setting in which it was implemented. This would be the

case, for example, in comparing STD incidence rates among condom

users versus non-condom users following an advertising campaign. Great care

needs to be taken to control potential confounding factors, since adopters and

non-adopters of the intervention may differ in many important respects, includ-

ing their exposure to infection. The magnitude of this problem may be assessed

by a comparison of the non-adopters in the intervention area(s) with persons in

control areas.

Each of these three comparisons has its merits. In the absence of a randomized

controlled design, we recommend that an evaluation study include as many as

possible, since they give complementary information. From Table 34.4 it can be

seen that both a longitudinal design and a cross-sectional design with repeated

surveys in principle allow measurement of all three of the basic types of compari-

son. A single cross-sectional survey can make intervention–control comparisons

and adopter versus non-adopter comparisons but not pre-intervention post-inter-

vention comparisons. The longitudinal approach can more accurately establish

outcome and exposure status and the time sequence between them, but is consider-

ably more expensive and logistically complex than the cross-sectional approach.

Randomized controlled trials usually measure outcomes using a longitudinal or

repeated cross-sectional design in order to maximize follow-up. However, they are

not restricted to do so and, where appropriate, outcome can be measured using a

single cross-sectional survey. For example, in a cluster randomized trial of the

impact of a hygiene behaviour intervention, both hygiene practices and prevalence

of diarrhoea could be ascertained through a single cross-sectional survey carried

Table 34.4 Matrix showing the relationship between the ‘classical’ study designs and the three comparisons of

interest in evaluating an intervention.

Comparisons

Data collection Pre-post Intervention–control Adopters vs non-adopters

Longitudinal Yes Yes Yes

Cross-sectional (repeated) Yes Yes Yes

Cross-sectional (single round) No Yes Yes

Case-control No No Yes

406 Chapter 34: Linking analysis to study design



out, say, six months after the introduction of the intervention. A case–control

evaluation can only yield an adopter versus non-adopter comparison.

The choice of analysis methods for longitudinal and cross-sectional observa-

tional studies and for case control studies are summarized in the next two sections.

34.4 LONGITUDINAL AND CROSS-SECTIONAL STUDIES

We now turn to the analysis of observational studies to investigate the association

of an exposure with an outcome. In this section we cover methods relevant to

cross-sectional surveys and longitudinal studies, and in the next section those

relevant to case–control studies.

A cross-sectional study is carried out at just one point in time or over a short

period of time. Since cross-sectional studies provide estimates of the features of a

community at just one point in time, they are suitable for measuring prevalence

but not incidence of disease (see Chapter 15 for the definition of prevalence and

Chapter 22 for the definition of incidence), and associations found may be difficult

to interpret. For example, a survey on onchocerciasis showed that blind persons

were of lower nutritional status than non-blind. There are two possible explan-

ations for this association. The first is that those of poor nutritional status have

lower resistance and are therefore more likely to become blind from onchocercia-

sis. The second is that poor nutritional status is a consequence rather than a cause

of the blindness, since blind persons are not as able to provide for themselves.

Longitudinal data are necessary to decide which is the better explanation.

As described in Chapter 22, in a longitudinal study individuals are followed over

time, whichmakes it possible tomeasure the incidence of disease and easier to study

the natural history of disease. In some situations it is possible to obtain follow-up

data on births, deaths, and episodes of disease by continuous monitoring, for

example by monitoring registry records in populations where registration of deaths

is complete. Occasionally the acquisition of data may be retrospective, being carried

out from past records. More commonly it is prospective and, for this reason,

longitudinal studies have often been alternatively termed prospective studies.

Many longitudinal studies are carried out by conducting repeated cross-sectional

surveys at fixed intervals to enquire about, or measure, changes that have taken

place between surveys, such as births, deaths, migrations, changes in weight or

antibody levels, or the occurrence of new episodes of disease. The interval chosen

will depend on the factors being studied. For example, to measure the incidence of

diarrhoea, which is characterized by repeated short episodes, data may need to be

collected weekly to ensure reliable recall. To monitor child growth, on the other

hand, would require only monthly or 3-monthly measurements.

Choosing the statistical method to use

Table 34.5 provides a guide to the statistical methods available for the analysis of

cross-sectional and longitudinal studies and Table 34.6 summarizes the possible
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Table 34.6 Observational studies: guide to the appropriateness of types of outcome, for each study design.

Type of outcome

Study design Numerical Binary Rate Survival time

Longitudinal (complete follow-up) Yes Yes Yes Yes

Longitudinal (incomplete follow-up) Yes* Yes* Yes Yes

Longitudinal (repeated cross-sectional surveys) Yes** Yes** Yes Yes

Cross-sectional Yes Yes No No

Case–control No Yes No No

* Methods beyond the scope of this book

** Analyse taking into account repeated measures of outcome, using methods for clustered data (see

Chapter 31).

types of outcome according to the study design. The choice of which method to

use is determined by:

� the sampling scheme used to recruit participants into the study;

� whether measures are made at a single point in time, continuously over time, or

at repeated points in time;

� the types of the outcome and exposure variables.

The bottom line of the guide highlights two special cases that need to be con-

sidered:

� whether the data are clustered, either because of the sampling scheme (cluster

sampling or family studies), or in outcome measurement (repeated measures in

longitudinal studies=multiple measures per subject); and

� in the case of survival outcomes, whether the proportional hazards assumption

is satisfied.

Details of the methods can be found in the relevant sections of Parts B–E.

Types of sampling scheme and their implications

Occasionally a study includes the whole population of a confined area or insti-

tution(s), but more often only a sample is investigated. Whenever possible any

selection should be made at random. Possible schemes include:

1 Simple random sampling: the required number of individuals are selected at

random from the sampling frame, a list or a database of all individuals in the

population.

2 Systematic sampling: for convenience, selection from the sampling frame

is sometimes carried out systematically rather than randomly, by taking

individuals at regular intervals down the list, the starting point being

chosen at random. For example, to select a 5%, or 1 in 20, sample of the

population the starting point is chosen randomly from numbers 1 to 20,

and then every 20th person on the list is taken. Suppose 13 is the random

number selected, then the sample would comprise individuals 13, 33, 53, 73,

93, etc.
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3 Stratified sampling: a simple random sample is taken from a number of distinct

subgroups, or strata, of the population in order to ensure that they are all

adequately represented. If different sampling fractions are used in the different

strata, simple summary statistics will not be representative of the whole popu-

lation. Appropriate methods for the analysis of such studies use weights that are

inversely proportional to the probability that each individual was sampled, and

robust standard errors (see Chapter 30) to correct standard errors.

4 Multi-stage or cluster sampling: this is carried out in stages using the hierarchical

structure of a population. For example, a two-stage samplemight consist of first

taking a random sample of schools and then taking a random sample of

children from each selected school. The clustering of data must be taken into

account in the analysis.

5 Sampling on the basis of time: for example, the 1970 British Cohort Study

(BCS70) is an ongoing follow-up study of all individuals born between 5th

and 11th April, 1970 and still living in Britain.

34.5 CASE–CONTROL STUDIES

In a case–control study the sampling is carried out according to disease rather than

exposure status. A group of individuals identified as having the disease, the cases,

is compared with a group of individuals not having the disease, the controls, with

respect to their prior exposure to the factor of interest. The overriding principle is

that the controls should represent the population at risk of the disease. More

specifically, they should be individuals who, if they had experienced the disease

outcome, would have been included as cases in our study. The outcome is the

case–control status, and is therefore by definition a binary variable. The methods

to use are therefore those outlined in Part C. These are summarized in Table 34.7.

The main feature that influences the methods for analysis is whether controls were

selected at random or using a matched design.

Analysis of unmatched case–control studies

For unmatched case–control studies, standard methods for the analysis of binary

outcomes using odds ratios as the measure of association are used. Analysis of the

effect of a binary exposure starts with simple 2� 2 tables, and proceeds to the use of

Mantel–Haenszel methods and logistic regression to control for the effect of con-

founding variables. These methods were described in detail in Chapters 16 to 20.

Analysis of matched case–control studies

In a matched case–control study, each case is matched with one or more controls,

who are deliberately chosen to have the same values as the case for any potential

confounding variables. There are two main reasons for matching in case–control

studies:
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Table 34.7 Analysis of case–control studies: summary of methods.

Sampling scheme for controls Single exposure Adjustment for confounding variables

Random (unmatched case–control

study)

2� 2 table showing

exposure � case=control

Logistic regression or

Mantel–Haenszel methods

OR¼ cross-product ratio

Standard x2 test

Stratum matching (frequency

matched case–control study)

Stratified analysis: 2� 2 table for

each stratum

Mantel–Haenszel OR and x2 test

Logistic regression or stratified

analysis, controlling for both the

matching factor(s) and the

confounding variables

Individual matching (one control

per case)

2� 2 table showing agreement

between case–control pairs with

respect to risk factor

Conditional logistic regression

OR¼ ratio of discordant pairs

McNemar’s x2 test

Individual matching (multiple

controls per case)

Mantel–Haenszel OR and x2 test,

stratifying on matched sets

Conditional logistic regression

1 Matching is often used to ensure that the cases and controls are similar

with respect to one or more confounding variables. For example, in a study

of pancreatic cancer occurring in subjects aged between 30 and 80 years it

is likely that the cases will come from the older extreme of the age range. Controls

might then be selected because they are of similar age to a case. This would ensure

that the age distribution of the controls is similar to that of the cases, and may

increase the efficiency of the study, for example by decreasing the width of

confidence intervals compared to an unmatched study. Note that unless the

matching factor is strongly associated with both the outcome and the exposure

the increase in efficiency may not be large, and therefore may not justify the

increased logistical difficulties and extra analytic complexity.

2 In some case–control studies it is difficult to define the population that gave rise

to the cases. For example, a large hospital specializing in the treatment of

cardiovascular disease may attract cases not just from the surrounding area

but also referrals from further afield. In developing countries, there may be no

register of the population in a given area, or who attend a particular health

facility. An alternative way of selecting controls representative of the popula-

tion that gave rise to the cases is to select them from the neighbourhood of each

case. For example, controls might be selected from among subjects living in the

third-closest house to that of each case.

It is essential to note that if matching was used in the design, then the analysis must

always take this into account, as described in Chapter 21. In summary:

1 In the simple case of individually matched case–control studies with one control

per case and no confounders, the methods for paired data described in Sections

21.3 and 21.4 can be used.
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2 When there are several controls per case, Mantel–Haenszel methods may be

used to estimate exposure odds ratios by stratifying on the case–control sets.

However, they are severely limited because they do not allow for further control

of the effects of confounding variables that were not also matching variables.

This is because each stratum is a single case and its matched controls, so that

further stratification is not possible. For example, if cases were individually

matched with neighbourhood controls then it would not be possible to stratify

additionally on age group. Stratification can be used to control for additional

confounders only by restricting attention to those case–control sets that are

homogeneous with respect to the confounders of interest.

3 The main approach is to use conditional logistic regression (see Section 21.5),

which is a variant of logistic regression in which cases are only compared to

controls in the same matched set. This allows analysis adjusting for several

confounders at the same time. There is also no restriction on the numbers of

cases and controls in each matched set.

4 However, if cases and controls are only frequency matched (e.g. if we simply

ensure that the age distribution is roughly the same in the cases and controls),

then the matching can be broken in the analysis, and standard logistic regres-

sion used, providing the matching variable(s) are included in the model. Mantel–

Haenszel methods are also valid, with the analysis stratified on all matching

variables.

Interpretation of the odds ratio estimated in a case–control study

For a rare disease, we saw in Chapters 16 and 23 that the odds ratio, risk ratio and

rate ratio are numerically equal. For a common disease the meaning of the odds

ratio estimated in a case–control study depends on the sampling scheme used to

select the controls, as described by Rodrigues and Kirkwood (1990). Briefly, there

are three possibilities:

1 The most usual choice is to select controls from those still disease-free at the end

of the study (the denominator group in the odds measure of incidence); any

controls selected during the course of the study who subsequently develop

disease are treated as cases and not as controls. In this case the odds ratio

estimated in the case–control study estimates the odds ratio in the population.

2 An alternative, in a case–control study conducted in a defined population, is to

select controls from the disease-free population at each time at which a case

occurs (concurrent controls). In this case the odds ratio estimated in the case–

control study estimates the rate ratio in the population.

3 More rarely, the controls can be randomly selected from the initially disease-

free population (if this can be defined). In this case the odds ratio estimated in

the case–control study estimates the risk ratio in the population.

412 Chapter 34: Linking analysis to study design



35.1 INTRODUCTION

An essential part of planning any investigation is to decide how many people need

to be studied. A formal sample size calculation, justifying the proposed study size

and demonstrating that the study is capable of answering the questions posed, is

now a component of a research proposal required by most funding agencies. Too

often, medical research studies have been too small, because the sample size was

decided on purely logistic grounds, or by guesswork. This is not only bad practice: it

is considered bymany to be unethical because of the waste of time and potential risk

to patients participating in a study that cannot answer its stated research question.

On the other hand, studying many more persons than necessary is also a waste of

time and resources. In a clinical trial, conducting a study that is too large may also

be unethical, because this could mean that more persons than necessary were given

the placebo, and that the introduction of a beneficial therapy was delayed. In this

chapter we will:

1 Illustrate the principles involved in sample size calculations by considering a

simple example in detail.

2 Present the different formulae required for the most common sample size

calculations and illustrate their application.

3 Discuss the implications of loss to follow-up, control of confounding and

examination of subgroup effects.

4 Describe the principles of sample size calculation for clustered designs.

5 Define the two types of error that can occur in significance tests.

6 Illustrate the implications of study power for the interpretation of statistical

significance.

35.2 PRINCIPLES OF SAMPLE SIZE CALCULATIONS

Calculating the required sample size requires that we quantify the objectives of our

study. For example, it would not be sufficient to state simply that the objective is
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to demonstrate whether or not formula-fed infants are at greater risk of death

than breast-fed ones. We would also need to state:

1 The size of the increased risk that it was desired to demonstrate since, for

example, a smaller study would be needed to detect a fourfold relative risk

than to detect a twofold one.

2 The significance level (or P-value), that is the strength of the evidence, that we

require in order to reject the null hypothesis of no difference in risk between

formula- and breast-fed infants. The greater the strength of evidence required,

that is the smaller the P-value, the larger will be the sample size needed.

3 The probability that we would like to have of achieving this level of significance.

This is required since, because of sampling variation (see Section 4.5), we cannot

rule out the possibility that the size of the effect observed in the study will be

much smaller than the ‘true’ effect. This means that we can never guarantee that

a study will be able to detect an effect however large we make it, but we can

increase the probability that we do so by increasing the sample size. This

probability is called the power of the study.

For example, we might decide that a study comparing the risk of death among

formula-fed and breast-fed infants would be worthwhile if there was a 90%

probability of demonstrating a difference, at 1% significance, if the true risk

ratio was as high as 2. We would then calculate the number of children required.

Alternatively, if we knew that a maximum of 500 children were available in our

study, we might calculate the power of the study given that we wanted to detect a

true risk ratio of 3 at 5% significance.

The principles involved in sample size calculations will now be illustrated by

considering a simple example in detail.

Example 35.1

Consider a hypothetical clinical trial to compare two analgesics, a new drug (A)

and the current standard drug (B), in which migraine sufferers will be given drug A

on one occasion and drug B on another, the order in which the drugs are given

being chosen at random for each patient. For illustrative purposes, we will

consider a simplified analysis based on the drug stated by each patient to have

provided greatest pain relief. How many patients would we need in order to be

able to conclude that drug A is superior?

First, we must be specific about what we mean by superiority. We will state this

as an overall preference rate of 70% or more for drug A, and we will decide that

we would like a 90% power of achieving a significant result at the 5% level.

Under the null hypothesis of no difference between the efficacies of the two

drugs, the proportion of patients stating a preference for drug A will be 0.5 (50%).

We can test the evidence that the observed preference proportion, p, differs from

0.5 using a z-test, as described in Section 15.6:

z ¼ p� 0:5

s:e: ( p)
¼ p� 0:5

(
p

0:5� (1� 0:5)=n)
¼ p� 0:5

(
p

0:25=n)
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This result will be significant at the 5% level (P < 0:05) if z � 1:96, or in other

words if p is 1.96 standard errors or more away from the null hypothesis value of

0.5.

We will illustrate the principles behind sample size calculations by considering

different possible sample sizes and assessing their adequacy as regards the power

of our study.

SignificantNot significantSignificant

Significant Not significant Significant

Significant Not significant Significant

Probability of a
significant result 
= 42.1%

Probability of a
significant result 
increased to 82.4%

Probability of a
significant result 
= 90%

(a)  n = 20

(b)  n = 50

(c)  Required sample size
      (n = 62)

0 0.5 0.7

0 0.5 0.7

0 0.5 0.620.38 0.7

0.36 0.64

0.28 0.72

1

1

1

Fig. 35.1 Probability of obtaining a significant result (at the 5% level) with various sample sizes (n) when

testing the proportion of preferences for drug A rather than drug B against the null hypothesis value of 0.5, if

the true value is 0.7.
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(a) Wewill start with a sample size of n ¼ 20, as depicted in Figure 35.1(a). Here:

s:e: ¼ (0:25=20)
p ¼ 0:1118

0:5þ 1:96 � s:e: ¼ 0:5þ 1:96� 0:1118 ¼ 0:72

and 0:5� 1:96� s:e: ¼ 0:5� 1:96� 0:1118 ¼ 0:28

Thus observed proportions of 0.72 and above, or 0.28 and below, would

lead to a result that is significant at the 5% level.

If the true proportion is 0.7, what is the likelihood of observing 0.72 or

above, and thus getting a result that is significant at the 5% level? This is

illustrated by the shaded area in Figure 35.1(a). The curve represents the

sampling distribution, which is a normal distribution centred on 0.7 with a

standard error of (0:7� 0:3=20)
p ¼ 0:1025. The z-value corresponding to

0.72 is:

0:72� 0:7

0:1025
¼ 0:20

The proportion of the standard normal distribution above 0.20 is found

from Table A1 (in the Appendix) to equal 0.421, or 42.1%. In summary,

this means that with a sample size of 20 we have only a 42.1% chance of

demonstrating that drug A is better, if the true preference rate is 0.7.

(b) Consider next what happens if we increase the sample size to 50, as shown in

Figure 35.1(b). The ranges of values that would now be significant have

widened to 0.64 and above, or 0.36 and below. The sampling distribution

has narrowed, and there is a greater overlap with the significant ranges.

Consequently, the probability of a significant result has increased. It is now

found to be 82.4%, but this is still less than our required 90%.

(c) Thus we certainly need to study more than 50 patients in order to have 90%

power. But exactly how many do we need? We need to increase the sample

size, n, to the point where the overlap between the sampling distribution and

the significant ranges reaches 90%, as shown in Figure 35.1(c). We will now

describe how to calculate directly the sample size needed to do this. A

significant result will be achieved if we observe a value above

0:5þ 1:96� s:e: ¼ 0:5þ 1:96� (0:5� 0:5=n)
p

(or below 0:5� 1:96� s:e:).Wewant to select a large enough n so that 90%of

the sampling distribution is above this point. The z-value of the sampling

distribution corresponding to 90% is �1.28 (see Table A2), which means an

observed value of

0:7� 1:28� s:e: ¼ 0:7� 1:28� (0:7� 0:3=n)
p
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Therefore, n should be chosen large enough so that

0:7� 1:28� (0:7� 0:3=n)
p

> 0:5þ 1:96� (0:5� 0:5=n)
p

Rearranging this gives

0:7� 0:5 >
1:96� (0:5� 0:5)

p þ 1:28� (0:7� 0:3)
p

n
p

Squaring both sides, and further rearrangement gives

n >
[1:96� (0:5� 0:5)

p þ 1:28� (0:7� 0:3)
p

]2

0:22

¼ 1:56662

0:22
¼ 61:4

We therefore require at least 62 patients to satisfy our requirements of

having a 90% power of demonstrating a difference between drugs A and

B that is significant at the 5% level, if the true preference rate for drug A is

as high as 0.7.

35.3 FORMULAE FOR SAMPLE SIZE CALCULATIONS

The above discussion related to sample size determination for a test that a single

proportion (the proportion of participants preferring drug A to drug B) differs

from a specified null value. In practice it is not necessary to go through such

detailed reasoning every time. Instead the sample size can be calculated directly

from a general formula, which in this case is:

n >
[u �(1� �)
p þ v �null(1� �null)

p
]2

(�� �null)
2

where:

n ¼ required minimum sample size

� ¼ proportion of interest

�null ¼ null hypothesis proportion

u ¼ one-sided percentage point of the normal distribution corresponding to

100% � the power, e.g. if power ¼ 90%, (100%� power) ¼ 10% and u

¼ 1:28

v ¼ percentage of the normal distribution corresponding to the required (two-

sided) significance level, e.g. if significance level ¼ 5%, v ¼ 1:96.

For example, in applying this formula to the above example we have:

� ¼ 0:7, �null ¼ 0:5, u ¼ 1:28 and v ¼ 1:96

giving
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n >
[1:28� (0:7� 0:3)

p þ 1:96� (0:5� 0:5)
p

]2

(0:7� 0:5)2
¼ 1:56662

0:22
¼ 61:4

which is exactly the same as obtained above.

The same principles can also be applied in other cases. Detailed reasoning is not

given here but the appropriate formulae for use in the most common situations are

listed in Table 35.1. The list consists of two parts. Table 35.1(a) covers cases where

the aim of the study is to demonstrate a specified difference. Table 35.1(b) covers

situations where the aim is to estimate a quantity of interest with a specified

precision.

Note that for the cases with two means, proportions, or rates, the formulae give

the sample sizes required for each of the two groups. The total size of the study is

therefore twice this.

Table 35.2 gives adjustment factors for study designs with unequal size groups

(see Example 35.4). Note also that the formulae applying to rates give the required

sample size in the same unit as the rates (see Example 35.3).

The use of Table 35.1 will be illustrated by several examples. It is important to

realize that sample size calculations are based on our best guesses of a situation.

The number arrived at is not magical. It simply gives an idea of the sort of

numbers to be studied. In other words, it is useful for distinguishing between 50

and 100, but not between 51 and 52. It is essential to carry out sample size

calculations for several different scenarios, not just one. This gives a clearer picture

of the possible scope of the study and is helpful in weighing up the balance

between what is desirable and what is logistically feasible.

Example 35.2

A study is to be carried out in a rural area of East Africa to ascertain whether

giving food supplementation during pregnancy increases birth weight. Women

attending the antenatal clinic are to be randomly assigned to either receive or not

receive supplementation. Formula 4 in Table 35.1 will help us to decide how many

women should be enrolled in each group. We need to supply the following infor-

mation:

1 The size of the difference between mean birth weights that we would like to be

able to detect. After much consideration it was decided that an increase of

0.25 kg was an appreciable effect that we would not like to miss. We therefore

need to apply the formula with �1 � �0 ¼ 0:25 kg.

2 The standard deviations of the distributions of birth weight in each group. It

was decided to assume that the standard deviation of birth weight would be the

same in the two groups. Past data suggested that it would be about 0.4 kg. In

other words we decided to assume that �1 ¼ 0:4 kg and �0 ¼ 0:4 kg.

3 The power required. 95% was agreed on. We therefore need u ¼ 1:64.

4 The significance level required. It was decided that if possible we would like to

achieve a result significant at the 1% level. We therefore need v ¼ 2:58.
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Applying formula 4 with these values gives:

n >
(1:64þ 2:58)2 � (0:42 þ 0:42)

0:252
¼ 17:8084� 0:32

0:0625
¼ 91:2

Therefore, in order to satisfy our requirements, we would need to enrol about 90

women in each group.

Example 35.3

Before embarking on a major water supply, sanitation, and hygiene intervention

in southern Bangladesh, we would first like to know the average number of

episodes of diarrhoea per year experienced by under-5-year-olds. We guess that

this incidence is probably about 3, but would like to estimate it within 	0:2. This

means that if, for example, we observed 2.6 episodes/child/year, we would like to

be able to conclude that the true rate was probably between 2.4 and 2.8 episodes/

child/year. Expressing this in more statistical terms, we would like our 95%

confidence interval to be no wider than 	0:2. As the width of this confidence

interval is approximately 	2 s.e.’s, this means that we would like to study enough

children to give a standard error as small as 0.1 episodes/child/year. Applying

formula 9 in Table 35.1 gives:

n >
3

0:12
¼ 300

Note that the formulae applying to rates (numbers 2, 5, 9, 12) give the required

sample size in the same unit as the rates. We specified the rates as per child per

year. We therefore need to study 300 child-years to yield the desired precision.

This could be achieved by observing 300 children for one year each or, for

example, by observing four times as many (1200) for 3months each. It is import-

ant not to overlook, however, the possibility of other factors such as seasonal

effects when deciding on the time interval for a study involving the measurement

of incidence rates.

Example 35.4

A case–control study is planned to investigate whether bottle-fed infants are at

increased risk of death from acute respiratory infections compared to breast-fed

infants. The mothers of a group of cases (infant deaths, with an underlying

respiratory cause named on the death certificate) will be interviewed about the

breast-feeding status of the child prior to the illness leading to death. The results

will be compared with those obtained from mothers of a group of healthy controls

regarding the current breast-feeding status of their infants. It is expected that

about 40% of controls (�0 ¼ 0:4) will be bottle-fed, and we would like to detect a

difference if bottle-feeding was associated with a twofold increase of death

(OR ¼ 2).
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How many cases and controls need to be studied to give a 90% power (u ¼ 1:28)

of achieving 5% significance (v ¼ 1:96)? The calculation consists of several steps

as detailed in formula 7 of Table 35.1.

1 Calculate �1, the proportion of cases bottle-fed:

�1 ¼ �0OR

1þ �0(OR� 1)
¼ 0:4� 2

1þ 0:4� (2� 1)
¼ 0:8

1:4
¼ 0:57

2 Calculate ���, the average of �0 and �1:

���¼ 0:4þ 0:57

2
¼ 0:485

3 Calculate the minimum sample size:

n >
[1:28 (0:4�0:6þ 0:57�0:43)

p þ 1:96 (2�0:485�0:515)
p

]2

(0:57� 0:4)2

¼ [1:28 0:4851
p þ 1:96 0:4996

p
]2

0:172
¼ 2:27692

0:172
¼ 179:4

We would therefore need to recruit about 180 cases and 180 controls, giving a total

sample size of 360.

What difference would it make if, rather than recruiting equal numbers of cases

and controls, we decided to recruit three times as many controls as cases? Table

35.2 gives appropriate adjustment factors for the number of cases according to

differing number of controls per case. For c ¼ 3 the adjustment factor is 2/3. This

means we would need 180� 2=3, that is 120 cases, and three times as many,

Table 35.2 Adjustment factor for use in study designs to compare unequal sized groups,

such as in a case–control study selecting multiple controls per case. This factor (f ) applies

to the smaller group and equals (c þ 1)=(2c), where the size of the larger group is to be c

times that of the smaller group. The sample size of the smaller group is therefore fn, where

n would be the number required for equal-sized groups, and that of the larger group is cfn

(see Example 35.4).

Ratio of larger to smaller group (c) Adjustment to sample size of smaller group (f )

1 1

2 3/4

3 2/3

4 5/8

5 3/5

6 7/12

7 4/7

8 9/16

9 5/9

10 11/20
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namely 360, controls. Thus although the requirement for the number of cases has

considerably decreased, the total sample size has increased from 360 to 540.

35.4 ADJUSTMENTS FOR LOSS TO FOLLOW-UP, CONFOUNDING AND

INTERACTION

The calculated sample size should be increased to allow for possible non-response

or loss to follow-up. Further adjustments should be made if the final analysis will

be adjusted for the effect of confounding variables or if the examination of

subgroup effects is planned.

1 It is nearly always the case that a proportion of the people originally recruited to

the study will not provide data for inclusion in the final analysis: for example

because they withdraw from the study or are lost to follow-up, or because

information on key variables is missing. The required sample size should be

adjusted to take account of these possibilities. If we estimate that x% of patients

will not contribute to the final analysis then the sample size should be multiplied

by 100=(100� x). For example if x ¼ 20%, the multiplying factor equals

100=(100� 20) ¼ 1:25.

Adjustment factor for x% loss ¼ 100=(100� x)

2 Smith and Day (1984) considered the effect of controlling for confounding

variables, in the context of the design of case–control studies. They concluded

that, for a single confounding variable, an increase in the sample size of more

than 10% is unlikely to be needed. Breslow and Day (1987) suggested that for

several confounding variables that are jointly independent, as a rough guide one

could add the extra sample size requirements for each variable separately.

3 In some circumstances we wish to design a study to detect differences between

associations in different subgroups, in other words to detect interaction between

the treatment or exposure effect and the characteristic that defines the sub-

group. The required sample size will be at least four times as large as when the

aim is to detect the overall association, and may be considerably larger. For

more details see Smith and Day (1984) or Breslow and Day (1987).

35.5 ADJUSTMENT FOR CLUSTERED DESIGNS

The analysis of studies that employ a clustered design was described in Chapter 31.

These include cluster randomized trials, in which randomization is applied to

clusters of people rather than individuals (see also Section 34.2), family studies

and studies which employ a cluster sampling scheme (see also Section 34.4).

Because individuals within a cluster may be more similar to each other than to

individuals in other clusters, a cluster randomized trial needs to include more

AQ1

AQ2
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individuals than the corresponding individually randomized trial. The same is true

of studies that employ a cluster rather than individual sampling scheme.

The amount by which the sample size needs to be multiplied is known as the

design effect (Deff ), and depends on the intraclass correlation coefficient (ICC).

The ICC was defined in Section 31.4 as the ratio of the between-cluster variance to

the total variance.

Design effect (Deff) ¼ 1þ (n0 � 1)� ICC

ICC ¼ intraclass correlation coefficient

n0 ¼ average cluster size

It can be seen that two factors influence the size of the design effect:

1 the greater the ICC, the greater will be the design effect; and

2 the greater the number of individuals per cluster, the greater will be the design

effect.

The number of clusters required is given by:

No: of clusters ¼ n

n0
[1þ (n0 � 1)� ICC]

n ¼ uncorrected total sample size

n0 ¼ average cluster size

Estimation of the ICC, at the time that a study is designed, is often difficult

because published papers have not tended to report ICCs. Although attempts have

been made to publish typical ICCs, for different situations (for example see

Gulliford et al., 1999), it will usually be sensible to calculate the number of clusters

required under a range of assumptions about the ICC, as well as using a range of

values for the cluster size. In particular, it may be useful to present the results

graphically, with lines showing the number of clusters required against number of

individuals per cluster, for various values of ICC.

For more details about sample size calculations for cluster randomized trials,

see Donner and Klar (2000) or Ukoumunne et al. (1999). Alternatively, Hayes

and Bennett (1999) suggested a method based on the coefficient of variation

(standard deviation/mean) of cluster rates, proportions or means. They give

guidance on how to estimate this value with or without the use of prior data on

between-cluster variation, and provide formulae for both unmatched and pair-

matched trials.
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35.6 TYPES OF ERROR IN SIGNIFICANCE TESTS

A significance test can never prove that a null hypothesis is either true or false. It

can only give an indication of the strength of the evidence against it. In using

significance tests to make decisions about whether to reject a null hypothesis, we

can make two types of error: we can reject a null hypothesis when it is in fact true,

or fail to reject it when it is false. These are called type I and type II errors

respectively (Table 35.3).

As explained in Chapter 8, the P-value (significance level) equals the probability

of occurrence of a result as extreme as, or more extreme than, that observed if the

null hypothesis were true. For example, there is a 5% probability that sampling

variation alone will lead to a P < 0:05 (a result significant at the 5% level), and so

if we judge such a result as sufficient evidence to reject the null hypothesis, there is

a 5% probability that we are making an error in doing so, if the null hypothesis is

true (see Figure 35.2a).

The second type of error is that the null hypothesis is not rejected when it is

false. This occurs because of overlap between the real sampling distribution of

the sample difference about the population difference, d ( 6¼ 0) and the accept-

ance region for the null hypothesis based on the hypothesized sampling distri-

bution about the incorrect difference, 0. This is illustrated in Figure 35.2(b).

The shaded area shows the proportion (b%) of the real sampling distribution

that would fall within the acceptance region for the null hypothesis, i.e. that

would appear consistent with the null hypothesis at the 5% level. The prob-

ability that we do not make a type II error (100 � b%) equals the power of the

test.

If a lower significance level were used, making the probability of a type I

error smaller, the size of the shaded area would be increased, so that there

would be a larger probability of a type II error. The converse is also true. For a

given significance level, the probability of a type II error can be reduced by

increasing the power, by increasing either the sample size or the precision of the

measurements (see Chapter 36). Each of the curves in Figure 35.2 would be

taller and narrower, and overlap less; the size of the shaded area would

therefore be reduced.

Table 35.3 Types of error in hypothesis tests.

Reality

Conclusion of significance test Null hypothesis is true Null hypothesis is false

Reject null hypothesis Type I error

(probability ¼ significance level)

Correct conclusion

(probability ¼ power)

Do not reject null hypothesis Correct conclusion

(probability ¼ 1� significance level)

Type II error

(probability ¼ 1� power)
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Accept NH if sample
difference here

Reject NH if sample
difference here

Reject NH if sample
difference here

2.5%

0

2.5%

(a)  Type I error. Null hypothesis (NH) is true. Population difference = 0. The curve shows
the sampling distribution of the sample difference. The shaded areas (total 5%) give
the probability that the null hypothesis is wrongly rejected.

Accept NH if sample
difference here

Reject NH if sample
difference here

Reject NH if sample
difference here

0 d

b%

(b)  Type II error. Null hypothesis is false. Population difference = d=0. The continuous
curve shows the real sampling distribution of the sample difference, while the dashed
curve shows the sampling distribution under the null hypothesis. The shaded area is the
probability (b%) that the null hypothesis fails to be rejected.

/

Fig. 35.2 Probabilities of occurrence of the two types of error of hypothesis testing, illustrated for a test at

the 5% level.

35.7 IMPLICATIONS OF STUDY POWER FOR THE INTERPRETATION OF

SIGNIFICANCE TESTS

Unfortunately, significance tests are often misused, with investigators using a 5%

threshold for statistical significance and concluding that any non-significant result

means that the null hypothesis is true. Another common misinterpretation is that

the P-value is the probability that the null hypothesis is true.

Table 35.4(a) demonstrates why such thinking is incorrect. It is based on

considering what would happen if 1000 different null hypotheses were tested and

significance at the 5% level (P < 0:05) used as a threshold for rejection, under the

following plausible assumptions:
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Table 35.4 Implications of study power for the interpretation of significance tests.

(a) Conclusions of significance tests of 1000 hypotheses, of which 10% are false, using P ¼ 0:05 as threshold

significance level, and conducted with 50% power (adapted from Oakes, 1986).

Reality

Conclusion of significance test Null hypothesis true Null hypothesis false Total

Reject null hypothesis (P<0:05) 45 (Type I errors) 50 95

Do not reject null hypothesis (P�0:05) 855 50 (Type II errors) 905

Total 900 100 1000

(b) Proportion of false-positive significant results, according to the P-value used for significance, the power of the

study and the proportion of studies in which the null hypothesis is truly false (adapted from Sterne and Davey Smith

2001). The result corresponding to Table 35.4(a) is in bold.

Proportion of studies in which

the null hypothesis is false Power of study

Percentage of significant results that are false-

positives

P ¼ 0:05 P ¼ 0:01 P ¼ 0:001

20% 5.9 1.2 0.1

80% 50% 2.4 0.5 0.0

80% 1.5 0.3 0.0

20% 20.0 4.8 0.5

50% 50% 9.1 2.0 0.2

80% 5.9 1.2 0.1

20% 69.2 31.0 4.3

10% 50% 47.4 15.3 1.8

80% 36.0 10.1 1.1

20% 96.1 83.2 33.1

1% 50% 90.8 66.4 16.5

80% 86.1 55.3 11.0

1 10% of the null hypotheses tested are in fact false (i.e. the effect being investi-

gated is real), and 90% are true (i.e. the hypothesis tested is incorrect). This is

conceivable given the large numbers of factors searched for in the epidemi-

ological literature. For example by 1985 nearly 300 risk factors for coronary

heart disease had been identified; it is unlikely that more than a fraction of these

factors actually increase the risk of the disease.

2 The power of the test is 50%. This is consistent with published surveys of the

size of clinical trials (see, for example, Moher et al., 1994); a large proportion

having been conducted with an inadequate sample size to address the research

question.

Assumption (1) determines the column totals in the table; the null hypothesis is

true in 900 of the tests and false in 100 of them. The type I error rate will be 5%,

the significance level being used. This means that we will incorrectly reject 45 of
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the 900 true null hypotheses. Assumption (2) means that that the type II error rate

equals 50% (100%� power). We will therefore fail to reject 50 of the 100 null

hypotheses that are false. It can be seen from the table that of the 95 tests that

result in a statistically significant result, only 50 are correct; 45 (47.4%) are type I

errors (false positive results).

Table 35.4(b) extends Table 35.4(a) by showing the percentage of false positive

results for different P-value thresholds under different assumptions about both the

power of studies and the proportion of true null hypotheses. For any choice of

significance level, the proportion of ‘significant’ results that are false-positives is

greatly reduced as power increases. The table suggests that unless the proportion

of meaningful hypotheses is very small, it is reasonable to regard P-values less

than 0.001 as providing strong evidence against the null hypothesis.
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36.1 INTRODUCTION

In this chapter we consider how to examine for errors made in measuring outcome

or exposure variables, and the implications of such errors for the results of

statistical analyses. Such errors may occur in a variety of ways, including:

1 Instrumental errors, arising from an inaccurate diagnostic test, an imprecise

instrument or questionnaire limitations.

2 Underlying variability, leading to differences between replicate measurements

taken at different points in time.

3 Respondent errors, arising through misunderstanding, faulty recall, giving the

perceived ‘correct’ answer, or through lack of interest. In some instances the

respondent may deliberately give the wrong answer because, for example, of

embarrassment in questions connected with sexually transmitted diseases or

because of suspicion that answers could be passed to income tax authorities.

4 Observer errors, including imprecision, misuse=misunderstanding of proced-

ures, and mistakes.

5 Data processing errors, such as coding, copying, data entry, programming and

calculating mistakes.

Our focus is on the detection, measurement and implications of random error, in

the sense that we will assume that any errors in measuring a variable are independ-

ent of the value of other variables in the dataset. Detailed discussion of differential

bias arising from the design or conduct of the study, such as selection bias, is

outside the scope of this book. Readers are referred to textbooks on epidemiology

and study design: recommended books are listed at the beginning of Chapter 34.

We cover:
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1 How to evaluate a diagnostic test or compare a measurement technique against

a gold standard, that gives a (more) precise measurement of the true value.

Often, the gold-standard method is expensive, and we wish to examine the

performance of a cheaper or quicker alternative.

2 How to choose the ‘best’ cut-off value when using a numerical variable to give a

binary classification.

3 How to assess the reproducibility of a measurement, including:

� agreement between different observers using the same measurement tech-

nique,

� the agreement between replicate measurements taken at different points in

time.

4 The implications of inaccuracies in measurement for the interpretation of results.

36.2 THE EVALUATION OF DIAGNOSTIC TESTS

The analysis of binary outcome variables was considered in Part C, while methods

for examining the effect of binary exposure variables are presented throughout

this book. In this section we consider how to assess the ability of a procedure to

correctly classify individuals between the two categories of a binary variable. For

example, individuals may be classified as diseased or non-diseased, exposed or

non-exposed, positive or negative, or at high risk or not.

Sensitivity and specificity

The ability of a diagnostic test (or procedure) to correctly classify individuals into

two categories (positive and negative) is assessed by two parameters, sensitivity

and specificity:

Sensitivity¼ proportion of true positives correctly identified as such

¼ 1� false negative rate

Specificity¼ proportion of true negatives correctly identified as such

¼ 1� false positive rate

To estimate sensitivity and specificity, each individual needs to be classified defini-

tively (using a ‘gold-standard’ assessment) as true positive or true negative and, in

addition, to be classified according to the test being assessed.

Example 36.1

Table 36.1 shows the results of a pilot study to assess parents’ ability to recall the

correct BCG immunization status of their children, as compared to health author-

ity records. Of the 60 children who had in fact received BCG immunization,

almost all, 55, were correctly identified as such by their parents, giving a sensitivity

of 55=60 or 91.7%. In contrast, 15 of the 40 children with no record of BCG

AQ1
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Table 36.1 Comparison of parents’ recall of the BCG immunization status of their children with that recorded in the

health authority records.

BCG immunization according

to health authority records

(‘gold standard’ test)

BCG immunization according to parents

(procedure being assessed)

Yes No Total

Yes 55 5 60 Sensitivity ¼ 55=60 ¼ 91:7%

No 15 25 40 Specificity ¼ 25=40 ¼ 62:5%

Total 70 30 100

PPV ¼ 55=70

¼ 78:6%

NPV ¼ 25=30

¼ 83:3%

immunization were claimed by their parents to have been immunized, giving a

specificity of 25=40 or 62.5%.

Sensitivity and specificity are characteristics of the test. Their values do not depend

on the prevalence of the disease in the population. They are particularly important

in assessing screening tests. Note that there is an inverse relationship between the

two measures, tightening (or relaxing) criteria to improve one will have the effect

of decreasing the magnitude of the other. Where to draw the line between them

will depend on the nature of the study. For example, in designing a study to test a

new leprosy vaccine, it would be important initially to exclude any lepromatous

patients. One would therefore want a test with a high success rate of detecting

positives, or in other words a highly sensitive test. One would be less concerned

about specificity, since it would not matter if a true negative was incorrectly

identified as positive and so excluded. In contrast, for the detection of cases during

the post-vaccine (or placebo) follow-up period, one would want a test with high

specificity, since it would then be more important to be confident that any

positives detected were real, and less important if some were missed.

Predictive values

A clinician who wishes to interpret the results of a diagnostic test will want to

know the probability that a patient is truly positive if the test is positive and

similarly the probability that the patient is truly negative if the test is negative.

These are called the positive and negative predictive values of the test:

Positive predictive value (PPV) ¼ proportion of test positives

that are truly positive

Negative predictive value (NPV) ¼ proportion of test negatives

that are truly negative
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In Example 36.1, BCG immunization was confirmed from health authority

records for 55 of the 70 children reported by their parents as having received

immunization, giving a PPV of 55=70 or 78.6%. The NPV was 25=30 or 83.3%.

The values of the positive and negative predictive values depend on the preva-

lence of the disease in the population, as well as on the sensitivity and specificity of

the procedure used. The lower the prevalence of true positives, the lower will be

the proportion of true positives among test positives and the lower, therefore, will

be the positive predictive value. Similarly, increasing prevalence will lead to

decreasing negative predictive value.

Choosing cut-offs

Where binary classifications are derived from a numerical variable, using a cut-off

value, the performance of different cut-off values can be assessed using a Receiver

Operating Characteristic curve, often known as a ROC curve. This is a plot of

sensitivity against 1� specificity, for different choices of cut-off. The name of the

curve derives from its original use in studies of radar signal detection.

Example 36.2

Data from a study of lung function among 636 children aged 7 to 10 years living in

a deprived suburb of Lima, Peru were introduced in Chapter 11. For each child

the FEV1 (the volume of air the child could breathe out in 1 second) was measured

before and after she or he exercised on an electric treadmill for 4minutes, and the

percentage reduction in FEV1 after exercise was calculated. This ranged from

�17:9% (i.e. an increase post-exercise) to a 71.4% reduction.

A total of 60 (9.4%) of the parents (or carers) reported that their child had

experienced chest tightness suggestive of asthma in the previous 12months. There

was strong evidence of an association between % reduction in FEV1 and reported

chest tightness in the child (odds ratio per unit increase in % reduction 1.052, 95%

CI 1.031 to 1.075). To examine the utility of % reduction in FEV1 as a means of

diagnosing asthma, a ROC curve was plotted, as displayed in Figure 36.1, showing

sensitivity (vertical axis) against 1� specificity (horizontal axis) for different

choices of cut-off values for FEV1. In this example, we can see that if we required

75% sensitivity from our cut-off then specificity would be around 50%, while a

lower cut-off value that gave around 60% sensitivity would yield a specificity of

about 75%.

The overall ability of the continuous measure (in this case FEV1) to discriminate

between individuals with and without disease may be measured by the area under

the ROC curve. If perfect discrimination were possible (the existence of a cut-off

with 100% sensitivity and 100% specificity), the ROC curve would go across the

top of the grid area, and yield an area of 1. This is because decreasing the

specificity by lowering the cut-off would maintain sensitivity at 100%, since a

lower cut-off can only capture an equal or higher percentage of cases. In contrast,

if the continuous measure is not able to discriminate at all, then 100% sensitivity
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Fig. 36.1 ROC curve showing the sensitivity and specificity corresponding to different choices of cut-off for

% reduction in FEV1 as a test for chest tightness suggestive of asthma in children in Peru.

can only be achieved with 0% specificity and vice versa. The ROC curve will be the

straight line in Figure 36.1 showing sensitivity ¼ 1� specificity, and the area under

the curve will be 0.5. In this example the area under the ROC curve is 0.699. The

area under the ROC curve may also be used to quantify how well a predictor

based on a number of variables (for example based on the linear predictor from a

logistic regression model) discriminates between individuals with and without

disease.

36.3 ASSESSING REPRODUCIBILITY OF MEASUREMENTS

In this section we describe methods to assess the extent of reproducibility of a

measurement (also known as reliability), including:

� agreement between different observers using the same measurement technique;

� agreement between replicate measurements taken at different points in time.

This is particularly important for any variable that is subjectively assessed, such as

in Example 36.3, or for which theremay be underlying natural variation, such as the

composition of a person’s daily nutritional intake (see Example 36.5), which will

show some day-to-day variations, as well as possible marked seasonal differences.

Kappa statistic for categorical variables

For categorical variables, the extent of reproducibility is usually assessed using a

kappa statistic. This is based on comparing the observed proportion of agreement
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(Aobs) between two readings made by two different observers, or on two different

occasions, with the proportion of agreements (Aexp) that would be expected simply

by chance. It is denoted by the Greek letter kappa, 	, and is defined as:

	 ¼ Aobs � Aexp

1� Aexp

If there is complete agreement then Aobs ¼ 1 and so 	 ¼ 1. If there is no more

agreement than would be expected by chance alone then 	 ¼ 0, and if there is

less agreement than would be expected by chance alone then 	 will be negative.

Based on criteria originally proposed by Landis and Koch:

� kappa values greater than about 0.75 are often taken as representing excellent

agreement;

� those between 0.4 and 0.75 as fair to good agreement; and

� those less than 0.4 as moderate or poor agreement.

Standard errors for kappa have been derived, and are presented in computer

output by many statistical packages. These may be used to derive a P-value

corresponding to the null hypothesis of no association between the ratings on

the two occasions, or by the two raters. In general, such P-values are not of interest,

because the null hypothesis of no association is not a reasonable one.

We will illustrate the calculation of kappa statistics using data from a study of

the way in which people tend to explain problems with their health. We will do this

first using a binary classification, and then a fuller 4-category classification.

Example 36.3: Binary classification

Table 36.2 summarizes data from a study in which 179 men and women filled in a

Symptom Interpretation Questionnaire on two occasions three years apart. On the

basis of this questionnaire they were classified according to whether or not they

tended to provide a normalizing explanation of symptoms. This means discounting

symptoms, externalizing them and explaining them away as part of normal experi-

ence. It can be seen that while 76 participants were consistently classified as

normalizers, and 47 as non-normalizers, the classification changed for a total of

56 participants. More participants were classified as normalizers on the second

than the first occasion.

The observed proportion of agreement between the assessment on the two

occasions, denoted by Aobs is therefore given by:

Aobs ¼ (76 þ 47)=179 ¼ 123=179 ¼ 0:687 (68:7%)

Part (b) of Table 36.2 shows the number of agreements and disagreements that

would be expected between the two classifications on the basis of chance alone.

These expected numbers are calculated in a similar way to that described for the
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Table 36.2 Classification of 179 men and women as ‘symptom normalizers’ or not, on

two measurement occasions three years apart. Data kindly provided by Dr David Kessler.

(a) Observed numbers

Second classification

First classification Normalizer Non-normalizer Total

Normalizer 76 17 93

Non-normalizer 39 47 86

Total 115 64 179

(b) Expected numbers

Second classification

First classification Normalizer Non-normalizer Total

Normalizer 59.7 33.3 93

Non-normalizer 55.3 30.7 86

Total 115 64 179

chi-squared test in Chapter 17. The overall proportion classified as normalizers on

the second occasion was 115=179. If this classification was unrelated to that on

the first, then one would expect this same proportion of second occasion normal-

izers in each first occasion group, that is 115=179� 93 ¼ 59:7 classified as nor-

malizers on both occasions, and 115=179� 86 ¼ 55:3 of those classified as

non-normalizers on the first occasion classified as normalizers on the second.

Similarly 64=179� 93 ¼ 33:3 of those classified as normalizers on the first

occasion would be classified as non-normalizers on the second, while

64=179� 86 ¼ 30:7 would be classified as non-normalizers on both occasions.

The expected proportion of chance agreement is therefore:

Aexp ¼ (59:7þ 30:7)=179 ¼ 0:505 (50:5%)

Giving a kappa statistic of:

	 ¼ (0:687� 0:505)=(1� 0:505) ¼ 0:37

This would usually be interpreted as representing at most moderate agreement

between the two classifications made over the three-year follow-up period.

Example 36.4: Categorical classification

Table 36.3(a) shows a more complete version of the data presented in Table 36.2,

with each participant now assessed as belonging to one of four groups according

to the way in which they tended to explain symptoms. Those classed as non-

normalizers (see earlier explanation) have been divided into somatizers, those who
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Table 36.3 Classification of the dominant style for explaining symptoms of 179 men and women as

normalizers, somatizers, psychologizers or no dominant style, on two measurement occasions three

years apart. Data kindly provided by Dr David Kessler.

(a) Observed numbers

Dominant style at

first classification

Dominant style at second classification

Normalizer Somatizer Psychologizer None Total

Normalizer 76 0 7 10 93

Somatizer 2 0 3 1 6

Psychologizer 17 1 15 8 41

None 20 3 5 11 39

Total 115 4 30 30 179

(b) Expected numbers of agreements

Dominant style at

first classification

Dominant style at second classification

Normalizer Somatizer Psychologizer None Total

Normalizer 59.7 93

Somatizer 0.1 6

Psychologizer 6.9 41

None 0.2 39

Total 115 4 30 30 179

tend to explain their symptoms as indicating a potentially more serious physical

illness, psychologizers, those who tend to give psychological explanations for their

symptoms, and those with no dominant style. The observed proportion of agree-

ment between the two occasions using the four category classification is:

Aobs ¼ (76 þ 0 þ 15 þ 11)=179 ¼ 102=179 ¼ 0:570 (57:0%)

The expected numbers for the various combinations of first and second occasion

classification can be calculated in exactly the same way as argued in the two-

category example. For the kappa statistic, we need these only for the numbers of

agreements; these are shown in Table 36.3(b).

Aexp ¼ (59:7þ 0:1þ 6:9þ 0:2)=179 ¼ 72:9=179 ¼ 0:407 (40:7%)

giving

	 ¼ Aobs � Aexp

1� Aexp

¼ (0:570� 0:407)=(1� 0:407) ¼ 0:27

representing poor to moderate agreement.

As the number of categories increases, the value of kappa will tend to decrease,

because there are more opportunities for misclassification. Further, for ordinal
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measures we may wish to count classification into adjacent categories as partial

agreement. For instance, classification into adjacent categories might count as

50% agreement, such as normalizers classified as somatizers and vice versa in

Table 36.3. This is done using a weighted kappa statistic, in which the observed and

expected proportions of agreement are modified to include partial agreements, by

assigning a weight between 0 (complete disagreement) and 1 (complete agreement)

to each category. Kappa statistics can also be derived when there are more than

two raters: for more details see Fleiss (1981) or Dunn (1989).

Numerical variables: reliability and the intraclass correlation coefficient

We now describe how to quantify the amount of measurement error in a numer-

ical variable. As with the kappa statistic, this may be done using replicate meas-

urements of the variable: for example measurement of blood pressure made on the

same patient by two observers at the same time, or using the same automated

measuring device on two occasions one week apart.

The reliability of a measurement is formally defined as the ratio of the variance

of the ‘true’ (underlying) values between individuals to the variance of the ob-

served values, which is a combination of the variation between individuals (�2
u)

and measurement error (�2
e). It can be measured using the intraclass correlation

coefficient (ICC), defined in Section 31.4 in the context of random-effects models:

Intraclass correlation coefficient (ICC) ¼ � 2
u

�2
u þ �2

e

�2
u ¼ variance between true measurements

�2
e ¼ measurement error variance

Here the ‘clusters’ are the individuals on whom measurements are made, and the

observations within clusters are the repeated measurements on the individuals.

ICC can range from 0 to 1, with the maximum of 1 corresponding to complete

reliability, which is when there is no measurement error, �2
e ¼ 0. The smaller

the amount of measurement error, the smaller will be the increase in the variability

of the observed measurements compared to the true measurements and the

closer will be the reliability (and ICC) to 1. If all individuals have the same

‘true’ value, then �2
u ¼ 0 and ICC ¼ 0; all observed variation is due to measure-

ment error.

The intraclass correlation coefficient may be estimated using a one-way analysis

of variance (see Chapter 11), or by using a simple random-effects model (see

Chapter 31). When there are paired measurements, the ICC can also be derived

by calculating the Pearson (product moment) correlation with each pair entered

twice, once in reverse order.
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Example 36.5

As part of a case–control study investigating the association between asthma and

intake of dietary antioxidants (measured using food frequency questionnaires),

replicate measurements of selenium intake were made 3months after the original

measurements, for 94 adults aged between 15 and 50 years. Figure 36.2 is a scatter

plot of the pairs of measurements; note that because estimated selenium intake

was positively skewed the measurements are plotted on a log scale (see Chapter

13). While there is clearly an association between the measurements on the first

and second occasions, there is also substantial between-occasion variability.

Themean and standard deviation of log selenium intake (measured in log (base e)

�g=week) in the 94 subjects with repeat measurements were 3.826 (s:d: ¼ 0:401) on

the first occasion and 3.768 (s:d: ¼ 0:372) on the second occasion. There was some

evidence that measured intake declined between the two measurements (mean

reduction 0.058, 95% CI �0:008 to 0.125, P ¼ 0:083). The estimated components

of variance were:

Within-subject (measurement error) variance, � 2
e ¼ 0:0535

Between-subject variance, � 2
u ¼ 0:0955

Total variance ¼ � 2
u þ � 2

e ¼ 0:1491

Fig. 36.2 Scatter plot of weekly selenium intake (�g=week) on a log scale among 94 participants in a study

of asthma and intake of antioxidant vitamins, measured using a food frequency questionnaire on two

occasions three months apart. Data displays and analyses from the FLAG study (Shaheen SO, Sterne JAC,

Thompson RL, Songhurst CE, Margetts BM, Burney PGJ (2001) American Journal of Respiratory and Critical

Care Medicine 164: 1823–1828).
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Therefore,

ICC ¼ �2
u

�2
u þ �2

e

¼ 0:0955=0:1491 ¼ 0:6410

Thus in this example, 64.1% of the total variability was between-subject variabil-

ity, indicating fairly good reliability of assessing selenium intake using a single

application of a food frequency questionnaire.

Links between weighted kappa and the intraclass correlation coefficient

For ordered categorical variables, there is a close link between the weighted kappa

statistic (defined above) and the intraclass correlation coefficient. If the variable

has k categories, and the weight, wij, for a subject in category i at the first

measurement and j at the second measurement is chosen to be:

wij ¼ 1� (i � j)2

(k� 1)2

then the value of the weighted kappa will be very close to the ICC. For example,

for an ordered categorical variable with four categories the weights would be

w11 ¼ w22 ¼ w33 ¼ w44 ¼ 1� 0

32
¼ 1

w12 ¼ w21 ¼ w23 ¼ w32 ¼ w34 ¼ w43 ¼ 1� 12

32
¼ 0:889

w13 ¼ w31 ¼ w24 ¼ w42 ¼ 1� 22

32
¼ 0:556

w14 ¼ w41 ¼ 1� 32

32
¼ 0

36.4 NUMERICAL VARIABLES: METHOD COMPARISON STUDIES

We will now consider analyses appropriate to method comparison studies, in which

two different methods of measuring the same underlying (true) value are com-

pared. For example, lung function might be measured using a spirometer, which is

expensive but relatively accurate, or with a peak flow meter, which is cheap (and

can therefore be used by asthma patients at home) but relatively inaccurate. The

appropriate analysis of such studies was described, in an influential paper, by

Bland and Altman (1986).

Example 36.6

We will illustrate appropriate methods for the analysis of method comparison

studies using data on 1236 women who participated in the British Women’s
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Regional Heart Study. The women were asked to report their weight as part of a

general questionnaire, and their weight was subsequently measured using accurate

scales. Figure 36.3 is a scatter plot of self-reported versus measured weight.

The two measures are clearly strongly associated: the Pearson correlation

between them is 0.982. It is important to note, however, that the correlation

measures the strength of association between the measures and not the agreement

between them. For example, if the measurements made with the new method were

exactly twice as large as those made with the standard method then the correlation

would be 1, even though the new method was badly in error. Further, the

correlation depends on the range of the true quantity in the sample. The correl-

ation will be greater if this range is wide than if it is narrow.

The diagonal line in Figure 36.3 is the line of equality: the two measures are in

perfect agreement only if all measurements lie along this line. It can be seen that

more of the points lie below the line than above it, suggesting that self-reported

weight tends to be lower than measured weight.

Bland and Altman suggested that the extent of agreement could be examined by

plotting the differences between the pairs of measurements on the vertical axis,

against the mean of each pair on the horizontal axis. Such a plot (often known as a

Bland–Altman plot) is shown in Figure 36.4. If (as here) one method is known to be

accurate, then the mean difference will tell us whether there is a systematic bias (a

tendency to be higher or lower than the true value) in the other measurement. In

Fig. 36.3 Scatter plot of self-reported versus measured weight (kg) in 1236 women who participated in the

British Regional Women’s Heart Study. The solid line is the line of equality. Data displays and analyses by

kind permission of Dr Debbie Lawlor and Professor Shah Ebrahim.
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Fig. 36.4 Scatter plot (Bland–Altman plot) of self-reported minus measured weight (vertical axis) against

mean of self-reported and measured weight (horizontal axis) in 1236 women who participated in the British

Regional Women’s Heart Study. The dashed horizontal line corresponds to the mean difference (�0:93 kg)

while the dotted horizontal lines correspond to the 95% limits of agreement.

this example, mean self-reported weight was 68.88 kg, while the mean measured

weight was 69.85 kg. The mean difference between self-reported and measured

weight was �0:93 kg (95% CI �1:07 to �0:80 kg). There was thus a clear tendency

for the women to under-report their weight, by an average of 0.93 kg. This is

shown by the dashed horizontal line in Figure 36.4.

The dotted horizontal lines in Figure 36.4 correspond to the 95% limits of

agreement, given by the mean difference plus or minus twice the standard deviation

of the differences. If the differences are normally distributed then approximately

95% of differences will lie within this range. In this example the 95% limits of

agreement are from �5:51 kg to 3.65 kg. Inspection of Figure 36.4 also shows that

the differences were negatively skewed; there were more large negative differences

than large positive ones. Further, there was a tendency for greater (negative)

differences with greater mean weight.

Note that the difference should not be plotted against either of the individual

measurements, because of the problem of ‘regression to the mean’ described in

Section 36.5.

Having calculated the mean difference and the 95% limits of agreement, it is for

the investigator to decide whether the methods are sufficiently in agreement for

one (perhaps the cheaper method) to be used in place of the other. In this example,

the systematic underreporting of weight in questionnaires, and the reduced
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accuracy, would have to be considered against the increased cost of inviting

women to a visit at which their weight could be measured accurately.

36.5 IMPLICATIONS FOR INTERPRETATION

The problems that may result from errors that occur when measuring outcome or

exposure variables are summarized in Table 36.4. Each type of problem will be

addressed in the sub-sections below. Note that the focus here is on random errors,

in the sense that we are assuming that any errors in measuring a variable are

independent of the values of other variables in the dataset.

Table 36.4 Summary of implications of random misclassification and measurement error.

Type of error

Type of variable

Misclassification

(binary=categorical variable)

Measurement error

(numerical variable)

Outcome Regression dilution bias Regression to the mean

Exposure Regression dilution bias

Potential problems if adjusting for confounders

Regression dilution bias

Regression dilution bias means that the estimated regression coefficient of the

exposure-effect estimate has been biased towards the null value of no exposure

effect, so that the magnitude of the association between the exposure and outcome

will tend to be underestimated:

1 For a numerical exposure variable, the degree of bias depends on the intraclass

correlation coefficient (ICC). For linear regression the relationship is:

Estimated coefficient ¼ correct coefficient� ICC

For other regression models, such as logistic regression and Cox regression, the

same relationship holds approximately, providing that the correct coefficient is

not too large, and that the measurement error variance is not too large com-

pared to the variance between true measurements. Frost and Thompson (2000)

compare a number of methods to correct for regression dilution bias.

2 The estimated effect of a categorical (or binary) exposure variable can be

corrected using replicate measurements on some or all individuals. However,

methods to do this are more complex than those for numerical exposure

variables, because the errors will be correlated with the true values. For example,

if the true value of a binary variable is 0 then the size of the error is either 0 or 1,

while if the true value is 1 then the size is 0 or �1. For this reason, applying

AQ2
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methods appropriate for numerical exposure variables will overcorrect the

regression dilution in the effect of a binary exposure variable. Appropriate

methods for this situation are reviewed by White et al. (2001).

3 For a binary outcome variable, if the sensitivity and specificity with which it was

measured are known then estimated odds ratios from logistic regression may be

corrected, as described by Magder and Hughes (1997).

4 Measurement error in a numerical outcome variable does not lead to regression

dilution bias, although the greater the measurement error the lower the preci-

sion with which exposure-outcome associations are estimated.

As mentioned above, correcting for regression dilution bias requires that we make

replicate measurements on some or all subjects. If each subject-evaluation costs the

same amount, then we must trade off the benefits of increasing the number of

subjects in our study with the benefits of increasing the number of measurements

per subject. Phillips and Davey Smith (1993) showed that it will sometimes be

better to recruit a smaller number of subjects with each evaluated on more than

one occasion, because this leads to more precise estimates of subjects’ exposure

levels and hence to reduced bias in exposure effect estimates. They suggested that

attempts to anticipate and control bias due to exposure measurement error should

be given at least as high a priority as that given to sample size assessment in the

design of epidemiological studies.

Before applying any method to correct regression coefficients for measurement

error, it is important to be aware of the potential problems associated with

measurement error in a number of exposure variables included in multivariable

models, as described in the next sub-section.

The effects of measurement error and misclassification in multivariable

models

When there are measurement errors in a number of exposure variables, and we

wish to control for the possible confounding effects of each on the other, the

effects are less straightforward to predict than is the case when we are considering

the association between an outcome and a single exposure variable. For example,

consider the situation in which:

1 the correct (underlying) value of exposure A is associated with the disease

outcome, but is measured with substantial error;

2 the correct (underlying) value of exposure B is not associated with the disease

outcome after controlling for exposure A; and

3 the amount of measurement error in exposure B is much less than the measure-

ment error in exposure A.

In this situation, including A and B in a multivariable model may give the

misleading impression that B is associated with the outcome, and that A is not

associated with the outcome after controlling for B: the opposite of the true

situation if there were no measurement error.
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Such possible problems are frequently ignored. Note that the bias caused by

differing amounts of measurement error in the two exposure variables may act in

either direction, depending on:

1 the direction of the association between the two variables;

2 the relative amounts of error in measuring them; and

3 whether the measurement errors are correlated.

Regression to the mean

Regression to the mean refers to a phenomenon first observed by Galton when he

noticed that the heights of sons tended to be closer to the overall mean than the

heights of their fathers. Thus, tall fathers tended to have sons shorter than

themselves, while the opposite was true for short fathers.

The same phenomenon occurs whenever two repeat measurements are made,

and where they are subject to measurement error. Larger values of the first

measurement will, on average, have positive measurement errors while smaller

values of the first measurement will, on average, have negative measurement

errors. This means that the repeat measurement will tend to be smaller if the

first measurement was larger, and larger if the first measurement was smaller. It

follows that the size of the first measurement will be negatively associated with the

difference between the two measurements.

The implications of this will be explained in more detail by considering the

repeated measurement of blood pressure and the assessment of anti-hypertensive

drugs in reducing blood pressure. For a more detailed discussion of regression to

the mean, and methods to correct for it, see Hayes (1988).

Example 36.7

Figure 36.5 shows the relationship between two diastolic blood pressure readings

taken 6months apart on 50 volunteers, while Figure 36.6 is a scatter plot of the

difference between the two readings (vertical axis) against the initial reading

(horizontal axis). This gives the impression that there is a downward gradient,

so that those with a high initial level have a reduced blood pressure 6months later,

while the opposite is true for those with an initial low level. However, for the

reasons explained above, this downward gradient may be the result of measure-

ment error. If there is no association between the true reduction and the true initial

value, the regression coefficient �obs for the observed association between the

difference and the initial value is given by:

�obs ¼ ICC� 1

in absence of ‘true’ association
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Fig. 36.5 The relationship between two diastolic blood pressure readings taken six months apart on 50

volunteers, showing little change on average. The straight line is the relationship that would be seen if the

readings on the two occasions were the same.

Fig. 36.6 Change in diastolic blood pressure plotted against initial value. An artificial negative correlation

(r ¼ �0:35, d:f: ¼ 48, P ¼ 0:013) is observed. The straight line is the regression line corresponding to

this association.

Thus the greater the measurement error variance, the smaller is the ICC and so the

greater is the slope of this apparent negative association.

Thus measurement error has important implications when the focus of interest

is change in outcome measurement, for example in a clinical trial to evaluate the

ability of an anti-hypertensive drug to reduce blood pressure:

1 If, as is often the case, the trial is confined to people with high initial diastolic

blood pressure, say 120mmHg or above, then it can be seen from Figure 36.6

that their repeated blood pressure measurements would show an average
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reduction, even in the absence of any treatment. It is therefore essential to have

a control group, and to compare any apparent reduction in the treatment group

with that in the control group.

2 Analyses investigating whether the size of any change in blood pressure is

related to the initial value must correct for regression to the mean. Blomqvist

(1977) suggested that the true regression coefficient can be estimated from the

observed regression coefficient using:

�true ¼
�obs þ (1� ICC)

ICC

To apply this method in practice requires an external estimate of the within-

person (measurement error) variance.

3 Oldham (1962) suggested plotting the difference, BP2 � BP1, against the average

of the initial and final blood pressure readings, 1⁄2 (BP1 þ BP2), rather than

against the initial reading as shown in Figure 36.7, to correct for regression to

the mean. (Note the similarity with Bland–Altman plots, described in Section

36.4.) The correlation is attenuated to �0:19, suggesting that much or all of the

apparent association between blood pressure reduction and initial blood pres-

sure was caused by regression to the mean. However, there are at least two

circumstances when this can give misleading results. The Oldham plot will show

a positive association when the true change is unrelated to the initial level, if:

� the true change differs between individuals; or

� individuals have been selected on the basis of high initial values.

Fig. 36.7 Change in diastolic blood pressure plotted against the average of the initial and final readings,

The correlation is attenuated to �0:19, suggesting little or no relationship between BP2 � BP1 and blood

pressure.

AQ3

446 Chapter 36: Measurement error: assessment and implications



37.1 INTRODUCTION

In this chapter we focus on the different measures that are used to assess the

impact of an exposure or of a treatment on the amount of disease in a population.

We start by summarizing the three different ratio measures of the association

between an exposure (or treatment) and outcome, used throughout the book, and

show how these relate to measures of impact.

37.2 MEASURES OF ASSOCIATION

Table 37.1 summarizes the three ratio measures that we use to assess the strength

of the association between an exposure (or treatment) and an outcome. These are

the risk ratio, the rate ratio and the odds ratio.

Risk ratios

A risk ratio > 1 implies that the risk of disease is higher in the exposed group than

in the unexposed group, while a risk ratio < 1 occurs when the risk is lower in the

exposed group, suggesting that exposure may be protective. A risk ratio of 1 occurs

when the risks are the same in the two groups and is equivalent to no association

between the exposure and the disease. The further the risk ratio is from 1, the

stronger the association. See Chapter 16 for methods to derive confidence inter-

vals for the RR.
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Table 37.1 Summary of ratio measures of the association between exposure and disease, and the different study

designs in which they can be estimated.

Study design(s) in which they can be estimated

Definitions of different ratio measures

Longitudinal

(complete

follow-up)

Longitudinal

(incomplete

follow-up) Cross-sectional Case–control

Risk ratio ¼ risk in exposed group

risk in unexposed group

Yes No Yes No

Rate ratio ¼ rate in exposed group

rate in unexposed group
Yes Yes No No

Odds ratio ¼ odds in exposed group

odds in unexposed group
Yes No Yes Yes

Odds ratios

Interpretation of odds ratios is the same as that for risk ratios (see above), but

the odds ratio is always further away from 1 than the corresponding risk ratio.

Thus:

� if RR>1 then OR>RR;

� if RR<1 then OR<RR.

For a rare outcome (one in which the probability of the event not occurring is

close to 1) the odds ratio is approximately equal to the risk ratio (since the odds is

approximately equal to the risk).

Rate ratios

While the calculation of the risk is based on the population at risk at the start of

the study, the rate is based on the total person-years at risk during the study and

reflects the changing population at risk. This was illustrated for a cohort study in

Figure 22.2. When the outcome is not rare, the risk ratio will change over time, so

that the rate ratio (providing that it is constant over time) may be a more

appropriate measure of the association between exposure and disease. In particu-

lar, if all subjects experience the disease outcome by the end of the study, then the

risk ratio will be 1 even if the time to event was much greater in the exposed than

the unexposed group (or vice versa).

Comparison of the rate ratio, risk ratio and odds ratio

It was shown in Chapters 16 and 23 that for a rare outcome

Risk � Odds � Rate� Time

so that Risk ratio � Odds ratio � Rate ratio

AQ1

448 Chapter 37: Measures of association and impact



For a common disease, however, the three measures are different, and will lead to

three different measures of association between exposure and disease. The pre-

ferred choice in longitudinal studies is to use rate ratios (or hazard ratios when

data on times to event occurrences are available and disease rates change over

time: see Chapter 26). The rate ratio is the only choice when follow-up is incom-

plete, or individuals are followed for differing lengths of time. The use of risk

ratios is more appropriate, however, when assessing the protective effect of an

exposure or intervention, such as a vaccine, which it is believed offers full protec-

tion to some individuals but none to others, rather than partial protection to all

(Smith et al., 1984).

The risk ratio and odds ratio can both be estimated from longitudinal studies

with complete follow-up and from cross-sectional studies. Although the risk ratio

would generally be regarded as more easily interpretable than the odds ratio, the

odds ratio is often used because the statistical properties of procedures based on

the odds ratio are generally better. In case–control studies the odds ratio is always

used as the measure of effect.

37.3 MEASURES OF THE IMPACT OF AN EXPOSURE

We now show how ratio measures (of the strength of the association between

exposure and disease) relate to measures of the impact of exposure. The formulae

we present apply identically whether risks or rates are used.

Attributable risk

The risk ratio assesses how much more likely, for example, a smoker is to

develop lung cancer than a non-smoker, but it gives no indication of the magni-

tude of the excess risk in absolute terms. This is measured by the attributable

risk:

Attributable risk (AR)¼ risk among exposed � risk among unexposed

¼ the risk difference (see Section 16:3)

Example 37.1

Table 37.2 shows hypothetical data from a cohort study to investigate the associ-

ation between smoking and lung cancer. Thirty-thousand smokers and 60 000

non-smokers were followed for a year, during which time 39 of the smokers and

six of the non-smokers developed lung cancer. Thus the risk ratio was:
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Table 37.2 Hypothetical data from a one year cohort study to investigate the association between

smoking and lung cancer. The calculations of relative and attributable risk are illustrated.

Lung cancer No lung cancer Total One year risk

Smokers 39 29 961 30 000 1.30=1000

Non-smokers 6 59 994 60 000 0.10=1000

Total 45 89 955 90 000

RR ¼ 1:30
0:10 ¼ 13:0 AR ¼ 1:30� 0:10 ¼ 1:20=1000 Prop AR ¼ 1:20

1:30 ¼ 0:923 or 92:3%

RR ¼ 39=30000

6=60000
¼ 1:30

0:10
¼ 13:0

so that there was a very strong association between smoking and lung cancer. The

attributable risk of lung cancer due to smoking, given by the difference between

the risks among smokers and non-smokers, was:

AR ¼ 1:30� 0:10 ¼ 1:20 cases per 1000 per year

Attributable risk is sometimes expressed as a proportion (or percentage) of the

total incidence rate among the exposed, and is then called the proportional attrib-

utable risk, the attributable proportion (exposed), the attributable fraction (ex-

posed) or the aetiologic fraction (exposed).

Proportional AR¼ risk among exposed� risk among unexposed

risk among exposed

¼ (RR� 1)

RR

In the example, the proportional attributable risk was 1.20=1.30¼ 0.923, suggest-

ing that smoking accounted for 92.3% of all the cases of lung cancer among the

smokers.

Comparing attributable and relative measures

Example 37.2

Table 37.3 shows the relative and attributable rates of death from selected causes

associated with heavy cigarette smoking. The association has been most clearly

demonstrated for lung cancer and chronic bronchitis, with rate ratios of 32.4 and

21.2 respectively. If, however, the association with cardiovascular disease,
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Table 37.3 Relative and attributable rates of death from selected causes, 1951–1961, associated with

heavy cigarette smoking by British male physicians. Data from Doll & Hill (1964) British Medical Journal 1,

1399–1410, as presented by MacMahon & Pugh (1970) Epidemiology – Principles and Methods. Little,

Brown & Co., Boston (with permission).

Age-standardized death rate (per 1000 person-years)

Cause of death Non-smokers Heavy smokers RR AR

Lung cancer 0.07 2.27 32.4 2.20

Other cancers 1.91 2.59 1.4 0.68

Chronic bronchitis 0.05 1.06 21.2 1.01

Cardiovascular disease 7.32 9.93 1.4 2.61

All causes 12.06 19.67 1.6 7.61

although not so strong, is also accepted as being causal, elimination of smoking

would save even more deaths due to cardiovascular disease than due to lung

cancer: 2.61 compared to 2.20 for every 1000 smoker-years at risk. Note that the

death rates were age standardized to take account of the differing age distributions

of smokers and non-smokers, and of the increase in death rates with age (see

Chapter 25).

In summary, the risk (or rate) ratio measures the strength of an association

between an exposure and a disease outcome. The attributable risk (or rate), on the

other hand, gives a better idea of the excess risk of disease experienced by an

individual as the result of being exposed.

Population attributable risk

It is important to realize that the overall impact of an exposure on disease in

the population also depends on how prevalent the exposure is. In population

terms a rare exposure with a high associated risk ratio may be less serious in the

total number (or proportion) of deaths that it will cause than a very common

exposure with a lower associated risk ratio. The impact at the population level is

assessed by the excess overall risk (or rate) in the population as compared with the

risk (or rate) among the unexposed. The resulting measure is the population

attributable risk:

Population AR ¼ overall risk� risk among unexposed

This may also be expressed as a proportion (or percentage) of the overall risk. The

resulting measure is the population proportional attributable risk, alternatively

named the aetiologic fraction (population) or the attributable fraction (popula-

tion).
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Population proportional AR¼ overall risk� risk among unexposed

overall risk

¼ prevalenceexposure(RR� 1)

1þ prevalenceexposure(RR� 1)

Figure 37.1 shows how the value of the population proportional attributable

risk increases independently with the prevalence of the exposure and with the size

of the risk ratio. If all the population are exposed (prevalence¼ 100%), then the

value of the population proportional attributable risk is the same as the propor-

tional AR (exposed) defined above.

Fig. 37.1 Relationship between population proportional attributable risk and prevalence of exposure for

various values of the risk ratio.

Potential impact of reducing prevalence of exposure

The population attributable and proportional attributable risks give a measure of

the burden of disease in the population associated with a particular exposure.

They also give a measure of the impact that would be achieved by a totally

successful intervention which managed to eliminate the exposure. This is a theor-

etical maximum impact that is unlikely to be realized in practice. For example, it is

unlikely that any approach to control smoking would result in all smokers giving

up. If the intervention reduces the prevalence of exposure by r%, then the actual

impact will be as follows:
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Percentage impact ¼ r%� Population proportional AR

Example 37.3

Figure 37.2 illustrates the difference between potential impact and population

proportional attributable risk in a hypothetical population of 1000 children,

followed for one year without loss to follow-up. There are 400 children exposed

to a risk factor that is associated with a three-fold risk of death, and 600 children

who are not exposed. The 600 children in the unexposed group experience a

mortality rate of 50=1000=year which means that 600� 50=1000 ¼ 30 of them

will die during the year. If the 400 children in the exposed group were at the same

risk as the unexposed children, then 400� 50=1000 ¼ 20 of them would die.

However, they are at 3 times this risk. Their mortality rate is therefore

150=child=year, which translates into 400� 150=1000 ¼ 60 deaths during the

year, an excess of 40 deaths associated with exposure. Thus if it were possible to

eliminate exposure to the risk factor, the total number of deaths per year would be

reduced by 40, giving a total of 50 rather than 90 deaths a year. The population

proportional attributable risk, which is the percentage of deaths attributable to

exposure, equals 40=90, or 44%.

Suppose now that an intervention took place which successfully reduced the

prevalence of exposure by one half, that is from 40% to 20%. The right hand

panel in Figure 37.2 shows that there would then be 70 deaths a year. As the

size of the exposed group would be halved, the number of excess deaths

Unexposed Exposed Excess deaths Deaths saved

Population Deaths Population Deaths

400
RR=3

600

40
Excess
deaths

20

30

200
RR=3

800

20
Deaths
saved

20
Excess
deaths

10

40

Pre-intervention Post-intervention

Proportional AR
=40/90 =44%

Impact
=20/90 =22%

Fig. 37.2 Example showing potential impact of an intervention, assuming (i) 40% of population exposed

pre-intervention, (ii) RR associated with exposure equals 3, (iii) mortality rate among unexposed equals

50=1000/year, and (iv) the intervention reduces the prevalence of exposure by 50%.
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would also be halved, and would now be 20 rather than 40. Such an intervention

would therefore prevent 20 of the pre-intervention total of 90 deaths. That is, its

impact would be 20=90, or 22%.

37.4 MEASURES OF THE IMPACT OF A TREATMENT OR

INTERVENTION

Efficacy

The efficacy of a treatment or intervention is measured by the proportion of cases

that it prevents. Efficacy is directly calculated from the risk ratio (or rate ratio)

comparing disease outcome in the treated versus control group. For a successful

treatment (or intervention) this ratio will be less than 1.

Efficacy ¼ 1�RR

Example 37.4

Table 37.4 shows the hypothetical results from a randomized controlled trial of a

new influenza vaccine. A total of 80 cases of influenza occurred in the placebo

group. If this group had instead received vaccination one would have expected

only 8.3% (the rate experienced by the vaccinated group) of them to have de-

veloped influenza, that is 220� 0:083 ¼ 18:3 cases. The saving would therefore

have been 80� 18:3 ¼ 61:7 cases, giving an efficacy of 61:7=80 ¼ 77:2%.

The efficacy can be calculated directly from the risk ratio, which gives the risk in

the vaccinated group as a proportion of the risk in the control group. If the

vaccination had no effect, the risks would be the same and the risk ratio would

equal 1. In this case, the risk is considerably lower in the vaccine group. The risk

ratio equals 0.228, considerably less than 1. In other words the risk of influenza in

the vaccine group is only 0.228 or 22.8% of that in the placebo group. The vaccine

has therefore prevented 77.2% of influenza cases.

Table 37.4 Results from an influenza vaccine trial, previously presented in Table 16.2.

Influenza

Yes No Total

Vaccine 20 (8.3%) 220 (91.7%) 240

Placebo 80 (36.4%) 140 (63.6%) 220

Total 100 (21.7%) 360 (78.3%) 460

RR ¼ 20=240

80=220
¼ 0:083

0:364
¼ 0:228; Efficacy ¼ 1� 0:228 ¼ 0:772, or 77:2%
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The confidence interval for efficacy is calculated from the confidence interval for

risk ratio, as follows. Recall from Section 16.5 that:

95% CI (RR) ¼ RR=EF to RR� EF,

where EF ¼ exp[1:96� s:e:(logRR)]

and s:e:(logRR) ¼ [(1=d1 � 1=n1)þ (1=d0 � 1=n0)]
p

Since efficacy equals one minus RR, its 95% confidence interval is obtained by

subtracting each of the RR confidence limits from one.

95% CI (Efficacy) ¼ 1�RR� EF to 1�RR=EF

Note that the lower efficacy limit is obtained from the upper RR limit, and the

upper efficacy limit from the lower RR limit. In this example:

s:e:(log RR) ¼ [(1=20� 1=240)þ (1=80� 1=220)]
p ¼ 0:2319

EF ¼ exp(1:96� 0:2319) ¼ exp(0:4546) ¼ 1:5755

95% CI (RR) ¼ RR=EF to RR� EF ¼ 0:228=1:5755 to 0:228� 1:5755

¼ 0:145 to 0:359

95% CI (Efficacy) ¼ 1�RR� EF to 1�RR=EF ¼ 1� 0:359 to 1� 0:145

¼ 0:641 to 0:855

Thus the 95% confidence interval for the efficacy of this influenza vaccine is from

64.1% to 85.5%.

Number needed to treat

An additional way of measuring the impact of treatment, which has become

popular in recent years, is the number needed to treat (NNT). This is the number

of patients who we must treat in order to prevent one adverse event. It is defined

as:

Number needed to treat (NNT) ¼ 1

risk differencej j

The vertical bars in the formula mean the absolute value of the risk difference, that

is the size of the risk difference ignoring its sign. NNT is best used to illustrate the
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likely impact of treatment given a range of possible risks of the outcome event in

the treated population.

Example 37.5

Consider the effect of a new treatment that reduces the risk of death following

myocardial infarction by 25% (risk ratio¼ 0.75). The impact of using such a

treatment will depend on the frequency of death following myocardial infarction.

This is illustrated in Table 37.5, which shows that if the risk of death is 0.5 then

125 lives will be saved by treating 1000 patients with the new treatment, while if

this risk of death is 0.02 then only five lives will be saved. The reduction in the

number of deaths is simply the risk difference multiplied by the number of patients

(risk difference¼ risk of event in treated patients minus risk of event in control

patients). Therefore the risk difference measures the impact of treatment in redu-

cing the risk of an adverse event in the same way that the attributable risk

measures the impact of exposure in increasing the risk of an adverse event.

The values of the NNT are also shown in the table. When the risk of death in the

absence of treatment is 0.5, the NNT equals 1=0.125¼ 8. Thus we will prevent one

death for every eight patients treated. If, on the other hand, the risk of death in the

absence of treatment is only 0.02, the NNT equals 1=0.005¼ 200, meaning that we

will prevent one death for every 200 patients treated.

Table 37.5 Number of deaths in 1000 patients suffering a myocardial infarction according to whether a new

treatment is used, assuming different risks of death in the absence of the new treatment and a treatment risk ratio

of 0.75.

Risk of death Number of deaths

Current

treatment

(a)

New

treatment

(b) ¼ 0.75 � (a)

Risk

difference

(c) ¼ (b) � (a)

Current

treatment

(d) ¼ 1000 � (a)

New

treatment

(e) ¼ 1000 � (b)

Reduction in

number of deaths

(f) ¼ (d) � (e)

NNT

(g) ¼ 1=|(c)|

0.5 0.375 �0:125 500 375 125 8

0.1 0.075 �0:025 100 75 25 40

0.02 0.015 �0:005 20 15 5 200

Number needed to harm

It is important to distinguish between beneficial effects of a treatment (risk ratio

<1, risk difference <0Þ and harmful effects (risk ratio >1, risk difference >0). If

the treatment is harmful then the NNT is referred to as the number needed to harm

(NNH). This can be useful to assess the adverse impact of a treatment which has

known side effects. For example, if our treatment for myocardial infarction was

known to increase the risk of stroke, we might compare the number of patients

treated to cause one stroke (NNH) with the number of patients treated to prevent

one death (NNT).
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Note that if the treatment has no effect (risk ratio ¼ 1, risk difference¼ 0) then

the NNT is 1=0 ¼ 1 (infinity). This has a sensible interpretation: if the treatment

is ineffective then we will not prevent any outcome events however many patients

we treat. However problems can arise when deriving confidence intervals for the

NNT, if one limit of the CI is close to the point of no treatment effect.

37.5 ESTIMATES OF ASSOCIATION AND IMPACT FROM

MULTIVARIABLE ANALYSES

In most circumstances, multivariable analyses are based on ratio measures of the

effect of exposure or treatment. This is because, both on theoretical grounds and

on the basis of experience, the assumption of no interaction between the exposure

and confounding variables is more likely to hold (at least approximately) for ratio

measures. In the context of randomized trials, there is good empirical evidence

that meta-analyses based on risk differences tend to be more heterogeneous than

meta-analyses based on risk ratios or odds ratios (see Engels et al., 2000; or Egger

et al., 2001, pages 313–335).

It is therefore usually sensible to derive a ratio estimate of the strength of

association in a multivariable analysis of an observational study or meta-analysis

of randomized trials, whatever measure of impact is required. Estimates of NNT

or NNH are then derived by considering a range of levels of risk in the unexposed

group, and=or prevalence of exposure.
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38.1 INTRODUCTION

It is essential to plan and conduct statistical analyses in a way that maximizes the

quality and interpretability of the findings. In a typical study, data are collected on

a large number of variables and it can be difficult to decide which methods to use

and in what order. In this final chapter we present general guidelines on strategies

for data analysis.

38.2 ANALYSIS PLAN

The formulation of a written plan for analysis is recommended. The extent to

which it is possible to plan analyses in detail will depend on the type of study being

analysed:

� For a randomized controlled trial (RCT), which by its nature addresses a set of

clearly defined questions, the analysis plan is usually specified in detail. It will

include the precise definition of primary and secondary outcomes, the statistical

method to be used, guidelines on whether to adjust for baseline variables and,

possibly, a small number of planned subgroup analyses. See Section 34.2 for a

description of the analysis of RCTs.

� For an observational study, which is exploratory in nature, it is often not

possible to completely specify a plan for the analysis. However it is helpful to

write down, in advance, the main hypothesis or hypotheses to be addressed.

This will include the definitions of the outcome and exposure variables that will

be needed to answer these question(s), the variables thought a priori to be

possible confounders of the exposure–outcome association(s) and a small

number of possible effect modifiers.

Well-written analysis plans both serve as a guide for the person conducting

the analysis and, equally importantly, aid the interpretation and reporting of
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results. For example, if we find evidence of a subgroup effect (interaction) we

should report whether this was specified a priori or whether it is an unexpected

finding.

38.3 DATA CHECKING

Careful checking and editing of the data set are essential before statistical

analysis commences. The first step is to examine the distribution of each of

the variables to check for possible errors. For categorical variables, this

means checking that all observations relate to allowed categories, and that the

frequencies in each category make sense. For numerical variables, range checks

should be performed to search for values falling outside the expected range.

Histograms can also be used to look for ‘outliers’ that look extreme relative to

the rest of the data.

The next step is to conduct consistency checks, to search for cases where two or

more variables are inconsistent. For example, if sex and parity are recorded, a

cross-classification of the two can be used to check that no males were recorded

with a parity of one or more. Scatter plots can be useful for checking the

consistency of numerical variables, for example of weight against age, or weight

against height. Further outliers can be detected in this way.

Possible errors should be checked against the original records. In some cases it

may be possible to correct the data. In other cases, it may be necessary to insert a

missing value code if it is certain that the data were in error (for example an

impossible birth weight). In borderline cases, where an observation is an outlier

but not considered impossible, it is generally better to leave the data unchanged.

Strictly speaking, the analysis should then be checked to ensure that the conclu-

sions are not affected unduly by the extreme values (either using sensitivity

analyses in which the extreme values are excluded, or by examining influence

statistics; see Section 12.3). Note that when numerical values are grouped into

categories before analysis, a small number of outliers are unlikely to have a

marked influence on the results.

For studies in which individuals are classified as with and without disease,

checks should generally be made separately in the two groups, as the distributions

may be quite different.

38.4 INITIAL ANALYSES

Descriptive analysis

Once the data have been cleaned as thoroughly as possible, the distributions of

each of the variables should be re-examined (see Chapter 3), both (i) as a final

check that required corrections have been made, and (ii) to gain an understanding

of the characteristics of the study population. Individuals with and without disease

should again be examined separately.
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Specifying variables for analysis

In addressing a particular question we will need to specify both the outcome

variable and the exposure variable or variables (see Section 2.4). In observational

studies, the control of confounding (see Chapter 18) is a key issue in the analysis,

and so we should identify:

1 variables believed in advance to confound the exposure–outcome association

(a priori confounders); and

2 other variables to be investigated as possible confounders, since a plausible

argument can be made concerning their relationship with the exposure and

outcome variables, but for which there is little or no existing evidence.

We should also specify any variables considered to be possible effect-modifiers: in

that they modify the size or even the direction of the exposure–outcome associ-

ation. As described in Sections 18.4 and 29.5, effect modification is examined

using tests for interaction.

In practice, variables may play more than one role in an analysis. For example,

a variable may confound the effect of one of the main exposures of interest, but its

effect may also be of interest in its own right. A variable may be a confounder for

one exposure variable and an effect-modifier for another. Many studies have an

exploratory element, in that data are collected on some variables which may turn

out to be important exposures, but if they do not they may still need to be

considered as potential confounders or effect-modifiers.

Data reduction

Before commencing formal statistical analyses, it may be necessary to derive new

variables by grouping the values of some of the original variables, as explained in

Section 2.3. Note that the original variables should always be retained in the dataset;

they should never be overwritten.

Grouping of categorical exposure variables is necessary when there are large

numbers of categories (for example, if occupation is recorded in detail). If there

is an unexposed category, then this should generally be treated as a separate group

(e.g. non-smokers). The exposed categories should be divided into several groups;

four or five is usually sufficient to give a reasonable picture of the risk relation-

ship.

Grouping of numerical exposure variables may be necessary in order to:

1 use methods based on stratification (see Chapters 18 and 23), as recommended

for the initial examination of confounding (see below);

2 use graphical methods to examine how the level of a non-numerical outcome

changes with exposure level (see Section 29.6); and

3 to examine whether there is a linear association between a numerical exposure

variable and a non-numerical outcome (see Section 29.6).

Note that grouping entails loss of information: after checking linearity assumptions

or performing initial analyses using the grouped variable it may be appropriate
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to use the original variable, or a transformation of the original variable (see

Chapter 13), in the final analysis.

One strategy for numerical exposures is to divide the range of the variable using,

say, quintiles, to give five groups with equal numbers of subjects in each group.

This helps to ensure that estimates of effect for each category are reasonably

precise, but can sometimes obscure an important effect if a few subjects with

very high levels are grouped with others with more moderate levels. Alternatively,

cut-off points may be chosen on the basis of data from previous studies, the aim

being to define categories within which there is thought to be relatively little

variation in risk. Using standard cut-off points has the advantage of making

comparisons between studies easier. For example, Table 38.1 shows the different

possibilities for including body mass index (BMI), defined as weight=(height2), in

an analysis to examine its association with a disease outcome.

For variables included in the analysis as confounders, three or four categories

may be sufficient to remove most of the confounding. However, more categories

will be needed if the confounding is strong, as would often be the case with age, for

example. It is often necessary to examine the strength of the association between

the potential confounder and the outcome variable before deciding on the number

of categories to be used in analysis. The weaker the association, the more one may

combine groups. However it would be unwise to combine groups with very

different risks or rates of disease.

A further consideration is that for analyses of binary or time-to-event outcomes,

groups in which there are no, or very few, outcome events must be combined with

others before inclusion in analysis.

Table 38.1 Possible ways of deriving variables based on measured body mass index (BMI).

Choice

(i) Original variable

(ii) A transformation of the original variable (for example log BMI)

(iii) Quintiles of BMI, coded 1–5

(iv) Quintiles of BMI, coded as the median BMI in each quintile

(v) Standard cut-offs for BMI focusing on high levels of BMI as risky

(<25 ¼ normal; 25�30 ¼ overweight; �30 ¼ obese)

(vi) Standard cut-offs including an underweight group

(<20 ¼ underweight; 20�25 ¼ normal; 25�30 ¼ overweight; �30 ¼ obese)

Univariable analyses

It is usually helpful to begin with a univariable analysis, in which we examine

the association of the outcome with each exposure of interest, ignoring all

other variables. This is often called the crude association between the exposure

and the outcome. Although later analyses, controlling for the effects of

other variables, will supersede this one, it is still a useful stage of the analysis

because:
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1 Examination of simple tables or graphs, as well as the estimated association, can

give useful information about the data set. For example, it can show that there

were very few observations, or very few outcome events, in particular exposure

categories.

2 These analyses will give an initial idea of those variables that are strongly

related to the disease outcome.

3 The degree to which the crude estimate of effect is altered when we control for

the confounding effects of other variables is a useful indication of the amount of

confounding present (or at least, the amount that has been measured and

successfully removed).

For exposures with more than two levels, one of the levels has to be chosen as

the baseline (see Section 19.2). Often this will be the unexposed group or, if

everyone is exposed to some extent, the group with the lowest level of exposure.

If there are very few persons in this group, however, this will produce exposure

effect estimates with large standard errors. It is then preferable to choose a larger

group to be the baseline group.

38.5 ALLOWING FOR CONFOUNDING

This section should be read in conjunction with Section 29.8, which describes

general issues in the choice of exposure variables for inclusion in a regression

model.

In any observational study, the control of confounding effects will be a major

focus of the analysis. We have two tools available for this task: classical (Mantel–

Haenszel) methods based on stratification, and regression modelling. We have

emphasized the similarities between the two approaches (see Chapters 20 and 24),

so they should not be seen as in conflict. Regression methods controlling for the

effect of a categorical variable involve exactly the same assumptions, and hence

give essentially the same results, as Mantel–Haenszel methods stratifying on the

categorical variable.

A major reason for using classical methods in the initial phase of the analysis

is that the output encourages us to examine the exposure–outcome association

in each stratum, together with the evidence for interaction (effect modification). In

contrast, it is easy to use regression models without checking the assumption

that there is no interaction between the effects of the different variables in the

model.

However, regression models are generally the best approach when we wish to

control for the effects of a number of confounding variables, because stratifying

on the cross-classification of all the confounders is likely to produce a large

number of strata. As explained in Section 29.5, by assuming in regression models

that there is no interaction between the effects of confounding variables, we can

greatly reduce the number of strata (the number of parameters used to model the

effect of the confounders). In addition, dose–response effects can be examined

more flexibly in regression models (see Section 29.6).
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The need for external knowledge in assessment of confounding

As explained in Chapter 18, a confounding variable, C, is one that is associated

with both the exposure variable (E) and the outcome variable (D), and is not on

the part of the causal chain leading from E to D. It is important to realize that

external knowledge is more important than statistical strategies in choosing appro-

priate confounders to be controlled for in examining a particular exposure–out-

come association. This is because statistical associations in the data cannot, on their

own, determine whether it is appropriate to control for the effects of a particular

variable.

Example 38.1

In their article on the appropriate control of confounding in studies of the

epidemiology of birth defects, Hernán et al. (2002) considered the following

example. Should we control for C, a binary variable which records the event

that the pregnancy ended in stillbirth or therapeutic abortion, when examining

the association between folic acid supplementation in early pregnancy (the expos-

ure variable, E) and the risk of neural tube defects (the outcome, D) using data

from a case–control study? They pointed out that controlling for C would not be

the correct analysis, although:

1 controlling for the effect of C leads to a substantial change in the estimated

association between E and D; and

2 C is strongly associated with both E and D, and is not on the causal pathway

between them.

The reason is that C is affected by both E and D, rather than having any influence

on either of them. Therefore C, in this instance, cannot confound the E–D associ-

ation. Yet it is not uncommon to find epidemiological analyses controlling for C in

situations such as this. Note that restricting the analysis to live births (i.e. consider-

ing only one of the strata defined by C) will also produce a biased estimate of the E–

D association in this situation.

This example shows that careful consideration of the likely direction of associ-

ations between E, D and C is required in order to decide whether it is appropriate

to control for C in estimating the E–D association. Figure 38.1 gives examples of

circumstances in which C will and will not confound the E–D association.

Example 38.2

Because of the frequent introduction of new antiretroviral drugs for treatment of

HIV-infected persons, and the large number of different possible combinations of

these, many relevant questions about the effect of different drugs or drug combin-

ations have not been addressed in randomized trials with ‘hard’ outcomes such as

development of AIDS or death. There is therefore great interest in using longitu-

dinal studies of HIV-infected individuals to address these questions.

Consider a comparison of drug regimens A and B. Because antiretroviral

therapy may involve taking a large number of pills per day, and may have serious
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Fig. 38.1 Circumstances in which C will and will not confound an exposure–disease (E–D) association.

(Adapted from Case Control Studies MEB2 by James J. Schlesselman, copyright 1982 by Oxford University

Press, Inc., with permission.)

side-effects, adherence to the prescribed regime is likely to be associated both

with the probability of progressing to AIDS (D) and with the drug regimen

(E). However, in this example the drug regimen used is likely to influence adherence

to therapy. It would not, therefore, be appropriate to control for adherence in

estimating the E–D association, as it will be on the pathway between them.

Example 38.3

The ‘fetal origins’ hypothesis suggests that there are associations between prenatal

growth, reflected in measures such as birthweight, and adult heart disease.

Huxley et al. (2002) reviewed 55 studies that had reported associations between

birthweight (exposure) and later systolic blood pressure (outcome). Almost

all of the reported regression coefficients were adjusted for adult weight. However,

these need to be interpreted with caution since adult weight is on the causal

pathway between birthweight and blood pressure. Removing the adjustment

for adult weight, in 12 studies, halved the size of the estimated association.
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Choosing confounders

Taking into account the need to combine external knowledge with statistical

associations, we recommend the following strategy for choosing confounders:

1 Formulating a conceptual, hierarchical framework for the relationships

between the different variables and the disease outcome is strongly recom-

mended, as described by Victora et al. (1997) in the context of determinants

of childhood diarrhoea mortality. This is particularly useful both as a way of

summarizing existing knowledge and for clarifying the direction of any associ-

ations.

2 As a general rule, variables that are known a priori to be important confoun-

ders, based on previous work should be controlled for in the analysis.

3 In addition, other possible confounders may be selected as a result of explora-

tory analysis. This should be:

� restricted to variables that are associated with both the outcome and

exposure, and are not on the causal pathway between them;

� based on both the data being analysed and external knowledge, and after

careful consideration of the direction of associations.

4 Note, however, that for multiple linear regression, all exposure variables that are

clearly associated with the outcome should be included when estimating the

effect of a particular exposure, whether or not they are confounders (with the

exception that variables on the causal pathway between the exposure of interest

and the outcome should not be included; see Section 29.8).

5 Note also that automated ‘stepwise’ regression procedures are unlikely to be

appropriate in analyses whose aim is to estimate the effect of particular expos-

ures (see Section 29.8).

38.6 ANALYSING FOR INTERACTIONS

Three sorts of interaction may be distinguished:

1 Interaction between confounders. The main difference between regression models

and classical methods is that classical methods always allow for all interactions

between confounders. This is in fact usually unnecessary.

2 Interaction between a confounder and an exposure of interest. Strictly speaking,

the calculation of exposure effect estimates controlled for confounding variables

is appropriate only if the exposure effect is the same for all levels of the

confounder. In practice, of course, the effect will vary to at least some extent

between strata; in other words there is likely to be some interaction between the

exposure and the confounders controlled for in the analysis. In the presence of

substantial interaction, the stratum-specific effects of the exposure should be

reported.

3 Interaction between exposures of interest. If present, this may be of importance

both for the scientific interpretation of an analysis and for its implications for

preventive intervention.
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An exhaustive search for interactions with all possible variables, however, is

unlikely to be useful. Formal tests for interaction lack power, and statistically

significant interactions identified by a systematic sweep of all variables may well

be chance effects, while real interactions may go undetected. Sample sizes are

typically inadequate to have high power of detecting any but the strongest inter-

actions (see Section 35.4). Combining groups in the interaction parameter may

increase the power of tests for interaction (see Section 29.5).

The purpose of a statistical analysis is to provide a simplified but useful picture

of reality. If weak interactions are present, this is probably of little intrinsic

interest, and the calculation of an overall pooled estimate of effect for an individ-

ual exposure is a reasonable approximation to the truth.

For these reasons, we suggest delaying analysis for interactions to the final

analysis. Exposure–exposure and exposure–confounder interactions should then

be examined, paying particular attention to those thought a priori to be worth

investigation. These should be examined one at a time, to avoid a model with too

many additional parameters. In assessing the evidence for interactions, as much

attention should be paid to the presence of meaningful trends in effect estimates

over the strata, as to the results of formal tests for interaction.

38.7 MAKING ANALYSES REPRODUCIBLE

In the early stages of a statistical analysis it is useful to work interactively with the

computer, by trying a command, looking at the output, then correcting or refining

the command before proceeding to the next command. However, we recommend

that all analyses should eventually be done using files (programs) containing lists

of commands.

It is usually the case that, after analyses are first thought to be complete,

changes are found to be necessary. For example, more data may arrive, or

corrections may be made, or it may be discovered that an important confounder

has been omitted. This often means that the whole analysis must be performed

again. If analyses were performed interactively, this can be a daunting task. The

solution is to ensure that the whole analysis can be performed by running a series

of programs.

A typical series of programs is illustrated in Table 38.2. We strongly recommend

that you add frequent comment statements to your programs, which explain what

is being done in each section; especially in complicated or long programs. This is

useful for other members of the project team, and also invaluable when returning

to your own program some time later to rerun it or to modify it for a new analysis.

It is also important to document the analysis by recording the function of each

program file, and the order in which they should be run.

Following this strategy has two important consequences. Firstly, it will now be

straightforward to reproduce the entire analysis after corrections are made to the

raw data. Secondly, you will always be able to check exactly how a derived

variable was coded, which confounders were included in a particular analysis,
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Table 38.2 Typical sequence of programs to perform the analyses needed to analyse a particular exposure–

outcome association.

Program 1: Read the raw data file into the statistical package, label variables so that it is easy to

identify them, check that they have the correct value ranges, check consistency between

variables, create derived variables by recoding and combining variables, save the resulting

dataset

Program 2: Use the new dataset to examine associations between the outcome variable and the

exposures and confounders of interest, by producing appropriate graphs and tables and

performing univariable analyses

Program 3: Use Mantel–Haenszel and regression analyses to estimate exposure effects controlled for

potential confounders

Program 4: Examine interactions between exposures and between exposures and confounders

Program 5: Produce final tables for the research report

and so on. Remember that reviewers’ comments on a draft manuscript that was

submitted for publication tend to be received many months after the paper was

submitted (and even longer after the analysis was done). Minor modifications to

the analysis will be straightforward if the analysis is reproducible, but can waste

huge amounts of time if it is not.

38.8 COMMON PITFALLS IN ANALYSIS AND INTERPRETATION

Even when the analyses of primary interest are specified at the start of the study, a

typical analysis will involve choices of variable groupings and modelling strategies

that can make important differences to the conclusions. Further, it is common to

investigate possible associations that were not specified in advance, for example if

they were only recently reported. Three important reasons for caution in inter-

preting the results of analyses are:

1 Multiple comparisons. Even if there is no association between the exposure and

outcome variables, we would expect one in twenty comparisons to be statistic-

ally significant at the 5% level. Thus the interpretation of associations in a study

in which the effect of many exposures was measured should be much more

cautious than that for a study in which a specific a priori hypothesis was

specified. Searching for all possible associations with an outcome variable is

known as ‘data-dredging’ and may lead to dramatic but spurious findings.

2 Subgroup analyses. We should be particularly cautious about the interpretation

of apparent associations in subgroups of the data, particularly where there is no

convincing evidence of an overall association (see Section 34.2). It is extremely

tempting to emphasize an ‘interesting’ finding in an otherwise negative study.

3 Data-driven comparisons. A related problem is that we should not group an

exposure variable in order to produce the biggest possible association with the

outcome, and then interpret the P-value as if this had always been the intended

comparison. For example, when rearranging ten age groups into two larger
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groups, we could compare 1 with 2–10 or 1 and 2 with 3–10 and so on. If we

choose a particular grouping out of these nine possible ones because it shows

the largest difference between ‘younger’ and ‘older’ individuals, then we have

chosen the smallest P-value from nine possible ones. It is sensible to decide how

variables will be grouped as far as possible before seeing how different group-

ings affect the conclusions of your study.

These problems do notmean that all studies must have hypotheses and methods of

analysis that are specified at the outset. However, the interpretation of a finding

will be affected by its context. If a reported association is one of fifty which were

examined, this should be clearly stated when the research is reported. We would

probably view such an association (even with a small P-value) as generating a

hypothesis that might be tested in future studies, rather than as a definitive result.

38.9 CONCLUSIONS

In all but the simplest studies, there is no single ‘correct’ analysis or answer. Fast

computers and excellent statistical software mean that it is easy to produce

statistical analyses. The challenge to medical statisticians is to produce analyses

that answer the research question as clearly and honestly as possible.
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Table A2 Percentage points of

the standard normal distribution.

Percentage points

P-value One-sided Two-sided

0.5 0.00 0.67

0.4 0.25 0.84

0.3 0.52 1.04

0.2 0.84 1.28

0.1 1.28 1.64

0.05 1.64 1.96

0.02 2.05 2.33

0.01 2.33 2.58

0.005 2.58 2.81

0.002 2.88 3.09

0.001 3.09 3.29

0.0001 3.72 3.89
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Table A3 Percentage points of the t distribution.

Adapted from Table 7 of White et al. (1979) with permission of the authors and publishers.

One-sided P-value

0.25 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

Two-sided P-value

d.f. 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001

1 1.00 3.08 6.31 12.71 31.82 63.66 127.32 318.31 636.62

2 0.82 1.89 2.92 4.30 6.96 9.92 14.09 22.33 31.60

3 0.76 1.64 2.35 3.18 4.54 5.84 7.45 10.21 12.92

4 0.74 1.53 2.13 2.78 3.75 4.60 5.60 7.17 8.61

5 0.73 1.48 2.02 2.57 3.36 4.03 4.77 5.89 6.87

6 0.72 1.44 1.94 2.45 3.14 3.71 4.32 5.21 5.96

7 0.71 1.42 1.90 2.36 3.00 3.50 4.03 4.78 5.41

8 0.71 1.40 1.86 2.31 2.90 3.36 3.83 4.50 5.04

9 0.70 1.38 1.83 2.26 2.82 3.25 3.69 4.30 4.78

10 0.70 1.37 1.81 2.23 2.76 3.17 3.58 4.14 4.59

11 0.70 1.36 1.80 2.20 2.72 3.11 3.50 4.02 4.44

12 0.70 1.36 1.78 2.18 2.68 3.06 3.43 3.93 4.32

13 0.69 1.35 1.77 2.16 2.65 3.01 3.37 3.85 4.22

14 0.69 1.34 1.76 2.14 2.62 2.98 3.33 3.79 4.14

15 0.69 1.34 1.75 2.13 2.60 2.95 3.29 3.73 4.07

16 0.69 1.34 1.75 2.12 2.58 2.92 3.25 3.69 4.02

17 0.69 1.33 1.74 2.11 2.57 2.90 3.22 3.65 3.96

18 0.69 1.33 1.73 2.10 2.55 2.88 3.20 3.61 3.92

19 0.69 1.33 1.73 2.09 2.54 2.86 3.17 3.58 3.88

20 0.69 1.32 1.72 2.09 2.53 2.84 3.15 3.55 3.85

21 0.69 1.32 1.72 2.08 2.52 2.83 3.14 3.53 3.82

22 0.69 1.32 1.72 2.07 2.51 2.82 3.12 3.50 3.79

23 0.68 1.32 1.71 2.07 2.50 2.81 3.10 3.48 3.77

24 0.68 1.32 1.71 2.06 2.49 2.80 3.09 3.47 3.74

25 0.68 1.32 1.71 2.06 2.48 2.79 3.08 3.45 3.72

26 0.68 1.32 1.71 2.06 2.48 2.78 3.07 3.44 3.71

27 0.68 1.31 1.70 2.05 2.47 2.77 3.06 3.42 3.69

28 0.68 1.31 1.70 2.05 2.47 2.76 3.05 3.41 3.67

29 0.68 1.31 1.70 2.04 2.46 2.76 3.04 3.40 3.66

30 0.68 1.31 1.70 2.04 2.46 2.75 3.03 3.38 3.65

40 0.68 1.30 1.68 2.02 2.42 2.70 2.97 3.31 3.55

60 0.68 1.30 1.67 2.00 2.39 2.66 2.92 3.23 3.46

120 0.68 1.29 1.66 1.98 2.36 2.62 2.86 3.16 3.37

1 0.67 1.28 1.65 1.96 2.33 2.58 2.81 3.09 3.29
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Table A4 Two-sided P-values for the t distribution, according to the value of

the test statistic.

The final column shows P-values for infinite degrees of freedom, equivalent to P-values from the normal

distribution.

Value of test

statistic (t)

Degrees of freedom for t

5 6 7 8 9 10 12 14

1.5 0.194 0.184 0.177 0.172 0.168 0.165 0.159 0.156

1.6 0.170 0.161 0.154 0.148 0.144 0.141 0.136 0.132

1.7 0.150 0.140 0.133 0.128 0.123 0.120 0.115 0.111

1.8 0.132 0.122 0.115 0.110 0.105 0.102 0.097 0.093

1.9 0.116 0.106 0.099 0.094 0.090 0.087 0.082 0.078

2.0 0.102 0.092 0.086 0.081 0.077 0.073 0.069 0.065

2.1 0.090 0.080 0.074 0.069 0.065 0.062 0.058 0.054

2.2 0.079 0.070 0.064 0.059 0.055 0.052 0.048 0.045

2.3 0.070 0.061 0.055 0.050 0.047 0.044 0.040 0.037

2.4 0.062 0.053 0.047 0.043 0.040 0.037 0.034 0.031

2.5 0.054 0.047 0.041 0.037 0.034 0.031 0.028 0.025

2.6 0.048 0.041 0.035 0.032 0.029 0.026 0.023 0.021

2.7 0.043 0.036 0.031 0.027 0.024 0.022 0.019 0.017

2.8 0.038 0.031 0.027 0.023 0.021 0.019 0.016 0.014

2.9 0.034 0.027 0.023 0.020 0.018 0.016 0.013 0.012

3.0 0.030 0.024 0.020 0.017 0.015 0.013 0.011 0.010

3.1 0.027 0.021 0.017 0.015 0.013 0.011 0.009 0.008

3.2 0.024 0.019 0.015 0.013 0.011 0.009 0.008 0.006

3.3 0.021 0.016 0.013 0.011 0.009 0.008 0.006 0.005

3.4 0.019 0.014 0.011 0.009 0.008 0.007 0.005 0.004

3.5 0.017 0.013 0.010 0.008 0.007 0.006 0.004 0.004

3.6 0.016 0.011 0.009 0.007 0.006 0.005 0.004 0.003

3.7 0.014 0.010 0.008 0.006 0.005 0.004 0.003 0.002

3.8 0.013 0.009 0.007 0.005 0.004 0.003 0.003 0.002

3.9 0.011 0.008 0.006 0.005 0.004 0.003 0.002 0.002

4.0 0.010 0.007 0.005 0.004 0.003 0.003 0.002 0.001

4.1 0.009 0.006 0.005 0.003 0.003 0.002 0.001 0.001

4.2 0.008 0.006 0.004 0.003 0.002 0.002 0.001 0.001

4.3 0.008 0.005 0.004 0.003 0.002 0.002 0.001 0.001

4.4 0.007 0.005 0.003 0.002 0.002 0.001 0.001 0.001

4.5 0.006 0.004 0.003 0.002 0.001 0.001 0.001 <0.001

4.6 0.006 0.004 0.002 0.002 0.001 0.001 0.001 <0.001

4.7 0.005 0.003 0.002 0.002 0.001 0.001 0.001 <0.001

4.8 0.005 0.003 0.002 0.001 0.001 0.001 <0.001 <0.001

4.9 0.004 0.003 0.002 0.001 0.001 0.001 <0.001 <0.001

5.0 0.004 0.002 0.002 0.001 0.001 0.001 <0.001 <0.001
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Degrees of freedom for t
1 (same

16 18 20 25 30 40 50 60 as normal)

0.153 0.151 0.149 0.146 0.144 0.141 0.140 0.139 0.134

0.129 0.127 0.125 0.122 0.120 0.117 0.116 0.115 0.110

0.108 0.106 0.105 0.102 0.099 0.097 0.095 0.094 0.089

0.091 0.089 0.087 0.084 0.082 0.079 0.078 0.077 0.072

0.076 0.074 0.072 0.069 0.067 0.065 0.063 0.062 0.057

0.063 0.061 0.059 0.056 0.055 0.052 0.051 0.050 0.046

0.052 0.050 0.049 0.046 0.044 0.042 0.041 0.040 0.036

0.043 0.041 0.040 0.037 0.036 0.034 0.032 0.032 0.028

0.035 0.034 0.032 0.030 0.029 0.027 0.026 0.025 0.021

0.029 0.027 0.026 0.024 0.023 0.021 0.020 0.020 0.016

0.024 0.022 0.021 0.019 0.018 0.017 0.016 0.015 0.012

0.019 0.018 0.017 0.015 0.014 0.013 0.012 0.012 0.009

0.016 0.015 0.014 0.012 0.011 0.010 0.009 0.009 0.007

0.013 0.012 0.011 0.010 0.009 0.008 0.007 0.007 0.005

0.010 0.010 0.009 0.008 0.007 0.006 0.006 0.005 0.004

0.008 0.008 0.007 0.006 0.005 0.005 0.004 0.004 0.003

0.007 0.006 0.006 0.005 0.004 0.004 0.003 0.003 0.002

0.006 0.005 0.004 0.004 0.003 0.003 0.002 0.002 0.001

0.005 0.004 0.004 0.003 0.002 0.002 0.002 0.002 0.001

0.004 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001

0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001 <0.001

0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 <0.001

0.002 0.002 0.001 0.001 0.001 0.001 0.001 <0.001 <0.001

0.002 0.001 0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001

0.001 0.001 0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001

0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.001 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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Table A5 Percentage points of the x2 distribution.

Adapted from Table 8 of White et al. (1979) with permission of the authors and publishers.

d:f: ¼ 1. In the comparison of two proportions (2�2 x2 or Mantel–Haenszel x2 test) or in the

assessment of a trend, the percentage points give a two-sided test. A one-sided test may be obtained

by halving the P-values. (Concepts of one- and two-sidedness do not apply to larger degrees of

freedom, as these relate to tests of multiple comparisons.)

P-value

d.f. 0.5 0.25 0.1 0.05 0.025 0.01 0.005 0.001

1 0.45 1.32 2.71 3.84 5.02 6.63 7.88 10.83

2 1.39 2.77 4.61 5.99 7.38 9.21 10.60 13.82

3 2.37 4.11 6.25 7.81 9.35 11.34 12.84 16.27

4 3.36 5.39 7.78 9.49 11.14 13.28 14.86 18.47

5 4.35 6.63 9.24 11.07 12.83 15.09 16.75 20.52

6 5.35 7.84 10.64 12.59 14.45 16.81 18.55 22.46

7 6.35 9.04 12.02 14.07 16.01 18.48 20.28 24.32

8 7.34 10.22 13.36 15.51 17.53 20.09 21.96 26.13

9 8.34 11.39 14.68 16.92 19.02 21.67 23.59 27.88

10 9.34 12.55 15.99 18.31 20.48 23.21 25.19 29.59

11 10.34 13.70 17.28 19.68 21.92 24.73 26.76 31.26

12 11.34 14.85 18.55 21.03 23.34 26.22 28.30 32.91

13 12.34 15.98 19.81 22.36 24.74 27.69 29.82 34.53

14 13.34 17.12 21.06 23.68 26.12 29.14 31.32 36.12

15 14.34 18.25 22.31 25.00 27.49 30.58 32.80 37.70

16 15.34 19.37 23.54 26.30 28.85 32.00 34.27 39.25

17 16.34 20.49 24.77 27.59 30.19 33.41 35.72 40.79

18 17.34 21.60 25.99 28.87 31.53 34.81 37.16 42.31

19 18.34 22.72 27.20 30.14 32.85 36.19 38.58 43.82

20 19.34 23.83 28.41 31.41 34.17 37.57 40.00 45.32

21 20.34 24.93 29.62 32.67 35.48 38.93 41.40 46.80

22 21.34 26.04 30.81 33.92 36.78 40.29 42.80 48.27

23 22.34 27.14 32.01 35.17 38.08 41.64 44.18 49.73

24 23.34 28.24 33.20 36.42 39.36 42.98 45.56 51.18

25 24.34 29.34 34.38 37.65 40.65 44.31 46.93 52.62

26 25.34 30.43 35.56 38.89 41.92 45.64 48.29 54.05

27 26.34 31.53 36.74 40.11 43.19 46.96 49.64 55.48

28 27.34 32.62 37.92 41.34 44.46 48.28 50.99 56.89

29 28.34 33.71 39.09 42.56 45.72 49.59 52.34 58.30

30 29.34 34.80 40.26 43.77 46.98 50.89 53.67 59.70

40 39.34 45.62 51.81 55.76 59.34 63.69 66.77 73.40

50 49.33 56.33 63.17 67.50 71.42 76.15 79.49 86.66

60 59.33 66.98 74.40 79.08 83.30 88.38 91.95 99.61

70 69.33 77.58 85.53 90.53 95.02 100.43 104.22 112.32

80 79.33 88.13 96.58 101.88 106.63 112.33 116.32 124.84

90 89.33 98.65 107.57 113.15 118.14 124.12 128.30 137.21

100 99.33 109.14 118.50 124.34 129.56 135.81 140.17 149.45
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Table A6 Probits.

Adapted from Table 4 of Pearson & Hartley (1966) with permission of the Biometrika Trustees.

Probit¼ value of standard normal distribution
corresponding to cumulative percentage

þ 5, optional: not included
in this table

Decimal place of %

% 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 �1 �3.09 �2.88 �2.75 �2.65 �2.58 �2.51 �2.46 �2.41 �2.37
1 �2.33 �2.29 �2.26 �2.23 �2.20 �2.17 �2.14 �2.12 �2.10 �2.07
2 �2.05 �2.03 �2.01 �2.00 �1.98 �1.96 �1.94 �1.93 �1.91 �1.90
3 �1.88 �1.87 �1.85 �1.84 �1.83 �1.81 �1.80 �1.79 �1.77 �1.76
4 �1.75 �1.74 �1.73 �1.72 �1.71 �1.70 �1.68 �1.67 �1.66 �1.65

5 �1.64 �1.64 �1.63 �1.62 �1.61 �1.60 �1.59 �1.58 �1.57 �1.56
6 �1.55 �1.55 �1.54 �1.53 �1.52 �1.51 �1.51 �1.50 �1.49 �1.48
7 �1.48 �1.47 �1.46 �1.45 �1.45 �1.44 �1.43 �1.43 �1.42 �1.41
8 �1.41 �1.40 �1.39 �1.39 �1.38 �1.37 �1.37 �1.36 �1.35 �1.35
9 �1.34 �1.33 �1.33 �1.32 �1.32 �1.31 �1.30 �1.30 �1.29 �1.29

10 �1.28 �1.28 �1.27 �1.26 �1.26 �1.25 �1.25 �1.24 �1.24 �1.23
11 �1.23 �1.22 �1.22 �1.21 �1.21 �1.20 �1.20 �1.19 �1.19 �1.18
12 �1.18 �1.17 �1.17 �1.16 �1.16 �1.15 �1.15 �1.14 �1.14 �1.13
13 �1.13 �1.12 �1.12 �1.11 �1.11 �1.10 �1.10 �1.09 �1.09 �1.08
14 �1.08 �1.08 �1.07 �1.07 �1.06 �1.06 �1.05 �1.05 �1.05 �1.04

15 �1.04 �1.03 �1.03 �1.02 �1.02 �1.02 �1.01 �1.01 �1.00 �1.00
16 �0.99 �0.99 �0.99 �0.98 �0.98 �0.97 �0.97 �0.97 �0.96 �0.96
17 �0.95 �0.95 �0.95 �0.94 �0.94 �0.93 �0.93 �0.93 �0.92 �0.92
18 �0.92 �0.91 �0.91 �0.90 �0.90 �0.90 �0.89 �0.89 �0.89 �0.88
19 �0.88 �0.87 �0.87 �0.87 �0.86 �0.86 �0.86 �0.85 �0.85 �0.85

20 �0.84 �0.84 �0.83 �0.83 �0.83 �0.82 �0.82 �0.82 �0.81 �0.81
21 �0.81 �0.80 �0.80 �0.80 �0.79 �0.79 �0.79 �0.78 �0.78 �0.78
22 �0.77 �0.77 �0.77 �0.76 �0.76 �0.76 �0.75 �0.75 �0.75 �0.74
23 �0.74 �0.74 �0.73 �0.73 �0.73 �0.72 �0.72 �0.72 �0.71 �0.71
24 �0.71 �0.70 �0.70 �0.70 �0.69 �0.69 �0.69 �0.68 �0.68 �0.68

25 �0.67 �0.67 �0.67 �0.67 �0.66 �0.66 �0.66 �0.65 �0.65 �0.65
26 �0.64 �0.64 �0.64 �0.63 �0.63 �0.63 �0.63 �0.62 �0.62 �0.62
27 �0.61 �0.61 �0.61 �0.60 �0.60 �0.60 �0.59 �0.59 �0.59 �0.59
28 �0.58 �0.58 �0.58 �0.57 �0.57 �0.57 �0.57 �0.56 �0.56 �0.56
29 �0.55 �0.55 �0.55 �0.54 �0.54 �0.54 �0.54 �0.53 �0.53 �0.53

30 �0.52 �0.52 �0.52 �0.52 �0.51 �0.51 �0.51 �0.50 �0.50 �0.50
31 �0.50 �0.49 �0.49 �0.49 �0.48 �0.48 �0.48 �0.48 �0.47 �0.47
32 �0.47 �0.46 �0.46 �0.46 �0.46 �0.45 �0.45 �0.45 �0.45 �0.44
33 �0.44 �0.44 �0.43 �0.43 �0.43 �0.43 �0.42 �0.42 �0.42 �0.42
34 �0.41 �0.41 �0.41 �0.40 �0.40 �0.40 �0.40 �0.39 �0.39 �0.39

35 �0.39 �0.38 �0.38 �0.38 �0.37 �0.37 �0.37 �0.37 �0.36 �0.36
36 �0.36 �0.36 �0.35 �0.35 �0.35 �0.35 �0.34 �0.34 �0.34 �0.33
37 �0.33 �0.33 �0.33 �0.32 �0.32 �0.32 �0.32 �0.31 �0.31 �0.31
38 �0.31 �0.30 �0.30 �0.30 �0.30 �0.29 �0.29 �0.29 �0.28 �0.28
39 �0.28 �0.28 �0.27 �0.27 �0.27 �0.27 �0.26 �0.26 �0.26 �0.26

40 �0.25 �0.25 �0.25 �0.25 �0.24 �0.24 �0.24 �0.24 �0.23 �0.23
41 �0.23 �0.23 �0.22 �0.22 �0.22 �0.21 �0.21 �0.21 �0.21 �0.20
42 �0.20 �0.20 �0.20 �0.19 �0.19 �0.19 �0.19 �0.18 �0.18 �0.18
43 �0.18 �0.17 �0.17 �0.17 �0.17 �0.16 �0.16 �0.16 �0.16 �0.15
44 �0.15 �0.15 �0.15 �0.14 �0.14 �0.14 �0.14 �0.13 �0.13 �0.13

45 �0.13 �0.12 �0.12 �0.12 �0.12 �0.11 �0.11 �0.11 �0.11 �0.10
46 �0.10 �0.10 �0.10 �0.09 �0.09 �0.09 �0.09 �0.08 �0.08 �0.08
47 �0.08 �0.07 �0.07 �0.07 �0.07 �0.06 �0.06 �0.06 �0.06 �0.05
48 �0.05 �0.05 �0.05 �0.04 �0.04 �0.04 �0.04 �0.03 �0.03 �0.03
49 �0.03 �0.02 �0.02 �0.02 �0.02 �0.01 �0.01 �0.01 �0.01 0.00

(continued)
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Table A6 Probits (continued )

Decimal place of %

% 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02
51 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05
52 0.05 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07
53 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.09 0.10 0.10
54 0.10 0.10 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.12

55 0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.14 0.15 0.15
56 0.15 0.15 0.16 0.16 0.16 0.16 0.17 0.17 0.17 0.17
57 0.18 0.18 0.18 0.18 0.19 0.19 0.19 0.19 0.20 0.20
58 0.20 0.20 0.21 0.21 0.21 0.21 0.22 0.22 0.22 0.23
59 0.23 0.23 0.23 0.24 0.24 0.24 0.24 0.25 0.25 0.25

60 0.25 0.26 0.26 0.26 0.26 0.27 0.27 0.27 0.27 0.28
61 0.28 0.28 0.28 0.29 0.29 0.29 0.30 0.30 0.30 0.30
62 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.33 0.33
63 0.33 0.33 0.34 0.34 0.34 0.35 0.35 0.35 0.35 0.36
64 0.36 0.36 0.36 0.37 0.37 0.37 0.37 0.38 0.38 0.38

65 0.39 0.39 0.39 0.39 0.40 0.40 0.40 0.40 0.41 0.41
66 0.41 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.44
67 0.44 0.44 0.45 0.45 0.45 0.45 0.46 0.46 0.46 0.46
68 0.47 0.47 0.47 0.48 0.48 0.48 0.48 0.49 0.49 0.49
69 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.52 0.52 0.52

70 0.52 0.53 0.53 0.53 0.54 0.54 0.54 0.54 0.55 0.55
71 0.55 0.56 0.56 0.56 0.57 0.57 0.57 0.57 0.58 0.58
72 0.58 0.59 0.59 0.59 0.59 0.60 0.60 0.60 0.61 0.61
73 0.61 0.62 0.62 0.62 0.63 0.63 0.63 0.63 0.64 0.64
74 0.64 0.65 0.65 0.65 0.66 0.66 0.66 0.67 0.67 0.67

75 0.67 0.68 0.68 0.68 0.69 0.69 0.69 0.70 0.70 0.70
76 0.71 0.71 0.71 0.72 0.72 0.72 0.73 0.73 0.73 0.74
77 0.74 0.74 0.75 0.75 0.75 0.76 0.76 0.76 0.77 0.77
78 0.77 0.78 0.78 0.78 0.79 0.79 0.79 0.80 0.80 0.80
79 0.81 0.81 0.81 0.82 0.82 0.82 0.83 0.83 0.83 0.84

80 0.84 0.85 0.85 0.85 0.86 0.86 0.86 0.87 0.87 0.87
81 0.88 0.88 0.89 0.89 0.89 0.90 0.90 0.90 0.91 0.91
82 0.92 0.92 0.92 0.93 0.93 0.93 0.94 0.94 0.95 0.95
83 0.95 0.96 0.96 0.97 0.97 0.97 0.98 0.98 0.99 0.99
84 0.99 1.00 1.00 1.01 1.01 1.02 1.02 1.02 1.03 1.03

85 1.04 1.04 1.05 1.05 1.05 1.06 1.06 1.07 1.07 1.08
86 1.08 1.08 1.09 1.09 1.10 1.10 1.11 1.11 1.12 1.12
87 1.13 1.13 1.14 1.14 1.15 1.15 1.16 1.16 1.17 1.17
88 1.18 1.18 1.19 1.19 1.20 1.20 1.21 1.21 1.22 1.22
89 1.23 1.23 1.24 1.24 1.25 1.25 1.26 1.26 1.27 1.28

90 1.28 1.29 1.29 1.30 1.30 1.31 1.32 1.32 1.33 1.33
91 1.34 1.35 1.35 1.36 1.37 1.37 1.38 1.39 1.39 1.40
92 1.41 1.41 1.42 1.43 1.43 1.44 1.45 1.45 1.46 1.47
93 1.48 1.48 1.49 1.50 1.51 1.51 1.52 1.53 1.54 1.55
94 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64

95 1.64 1.65 1.66 1.67 1.68 1.70 1.71 1.72 1.73 1.74
96 1.75 1.76 1.77 1.79 1.80 1.81 1.83 1.84 1.85 1.87
97 1.88 1.90 1.91 1.93 1.94 1.96 1.98 2.00 2.01 2.03
98 2.05 2.07 2.10 2.12 2.14 2.17 2.20 2.23 2.26 2.29
99 2.33 2.37 2.41 2.46 2.51 2.58 2.65 2.75 2.88 3.09
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Table A7 Critical values for the Wilcoxon matched pairs signed rank test.

Reproduced from Table 21 of White et al. (1979) with permission of the authors and publishers.

N ¼ number of non-zero differences; T ¼ smaller of Tþ and T�; Significant if T < critical value.

One-sided P-value One-sided P-value

0.05 0.025 0.01 0.005 0.05 0.025 0.01 0.005

Two-sided P-value Two-sided P-value

N 0.1 0.05 0.02 0.01 N 0.1 0.05 0.02 0.01

5 1 30 152 137 120 109

6 2 1 31 163 148 130 118

7 4 2 0 32 175 159 141 128

8 6 4 2 0 33 188 171 151 138

9 8 6 3 2 34 201 183 162 149

10 11 8 5 3 35 214 195 174 160

11 14 11 7 5 36 228 208 186 171

12 17 14 10 7 37 242 222 198 183

13 21 17 13 10 38 256 235 211 195

14 26 21 16 13 39 271 250 224 208

15 30 25 20 16 40 287 264 238 221

16 36 30 24 19 41 303 279 252 234

17 41 35 28 23 42 319 295 267 248

18 47 40 33 28 43 336 311 281 262

19 54 46 38 32 44 353 327 297 277

20 60 52 43 37 45 371 344 313 292

21 68 59 49 43 46 389 361 329 307

22 75 66 56 49 47 408 397 345 323

23 83 73 62 55 48 427 397 362 339

24 92 81 69 61 49 446 415 380 356

25 101 90 77 68 50 466 434 398 373

26 110 98 85 76

27 120 107 93 84

28 130 117 102 92

29 141 127 111 100
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Table A8 Critical ranges for the Wilcoxon rank sum test.

Reproduced from Table A7 of Cotton (1974) with permission of the author and publishers.

n1, n2 ¼ sample sizes of two groups; T ¼ sum of ranks in group with smaller sample size;

significant if T on boundaries or outside critical range.

One-sided P-value

0.025 0.005 0.0005

Two-sided P-value

n1, n2 0.05 0.01 0.001

2, 8 3, 19

2, 9 3, 21

2, 10 3, 23

2, 11 4, 24

2, 12 4, 26

2, 13 4, 28

2, 14 4, 30

2, 15 4, 32

2, 16 4, 34

2, 17 5, 35

2, 18 5, 37

2, 19 5, 39 3, 41

2, 20 5, 41 3, 43

2, 21 6, 42 3, 45

2, 22 6, 44 3, 47

2, 23 6, 46 3, 49

2, 24 6, 48 3, 51

2, 25 6, 50 3, 53

3, 5 6, 21

3, 6 7, 23

3, 7 7, 26

3, 8 8, 28

3, 9 8, 31 6, 33

3, 10 9, 33 6, 36

3, 11 9, 36 6, 39

3, 12 10, 38 7, 41

3, 13 10, 41 7, 44

3, 14 11, 43 7, 47

3, 15 11, 46 8, 49

3, 16 12, 48 8, 52

3, 17 12, 51 8, 55

3, 18 13, 53 8, 58

3, 19 13, 56 9, 60

3, 20 14, 58 9, 63

3, 21 14, 61 9, 66 6, 69

3, 22 15, 63 10, 68 6, 72

3, 23 15, 66 10, 71 6, 75

3, 24 16, 68 10, 74 6, 78

3, 25 19, 71 11, 76 6, 81

4, 4 10, 26

4, 5 11, 29

4, 6 12, 32 10, 34

4, 7 13, 35 10, 38

4, 8 14, 38 11, 41

4, 9 15, 41 11, 45

4, 10 15, 45 12, 48

4, 11 16, 48 12, 52

4, 12 17, 51 13, 55

One-sided P-value

0.025 0.005 0.0005

Two-sided P-value

n1, n2 0.05 0.01 0.001

4, 13 18, 54 14, 58 10, 62

4, 14 19, 57 14, 62 10, 66

4, 15 20, 60 15, 65 10, 70

4, 16 21, 63 15, 69 11, 73

4, 17 21, 67 16, 72 11, 77

4, 18 22, 70 16, 76 11, 81

4, 19 23, 73 17, 79 12, 84

4, 20 24, 76 18, 82 12, 88

4, 21 25, 79 18, 86 12, 92

4, 22 26, 82 19, 89 13, 95

4, 23 27, 85 19, 93 13, 99

4, 24 28, 88 20, 96 13, 103

4, 25 28, 92 20, 100 14, 106

5, 5 17, 38 15, 40

5, 6 18, 42 16, 44

5, 7 20, 45 17, 48

5, 8 21, 49 17, 53

5, 9 22, 53 18, 57 15, 60

5, 10 23, 57 19, 61 15, 65

5, 11 24, 61 20, 65 16, 69

5, 12 26, 64 21, 69 16, 74

5, 13 27, 68 22, 73 17, 78

5, 14 28, 72 22, 78 17, 83

5, 15 29, 76 23, 82 18, 87

5, 16 31, 79 24, 86 18, 92

5, 17 32, 83 25, 90 19, 96

5, 18 33, 87 26, 94 19, 101

5, 19 34, 91 27, 98 20, 105

5, 20 35, 95 28, 102 20, 110

5, 21 37, 98 29, 106 21, 114

5, 22 38, 102 29, 111 21, 119

5, 23 39, 106 30, 115 22, 123

5, 24 40, 110 31, 119 23, 127

5, 25 42, 113 32, 123 23, 132

6, 6 26, 52 23, 55

6, 7 27, 57 24, 60

6, 8 29, 61 25, 65 21, 69

6, 9 31, 65 26, 70 22, 74

6, 10 32, 70 27, 75 23, 79

6, 11 34, 74 28, 80 23, 85

6, 12 35, 79 30, 84 24, 90

6, 13 37, 83 31, 89 25, 95

6, 14 38, 88 32, 94 26, 100

6, 15 40, 92 33, 99 26, 106

6, 16 42, 96 34, 104 27, 111

6, 17 43, 101 36, 108 28, 116

6, 18 45, 105 37, 113 29, 121
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Table A8 Critical ranges for the Wilcoxon rank sum test (continued )

One-sided P-value

0.025 0.005 0.0005

Two-sided P-value

n1, n2 0.05 0.01 0.001

6, 19 46, 110 38, 118 29, 127

6, 20 48, 114 39, 123 30, 132

6, 21 50, 118 40, 128 31, 137

6, 22 51, 123 42, 132 32, 142

6, 23 53, 127 43, 137 33, 147

6, 24 55, 131 44, 142 34, 152

7, 7 36, 69 32, 73 28, 77

7, 8 38, 74 34, 78 29, 83

7, 9 40, 79 35, 84 30, 89

7, 10 42, 84 37, 89 31, 95

7, 11 44, 89 38, 95 32, 101

7, 12 46, 94 40, 100 33, 107

7, 13 48, 99 41, 106 34, 113

7, 14 50, 104 43, 111 35, 119

7, 15 52, 109 44, 117 36, 125

7, 16 54, 114 46, 122 37, 131

7, 17 56, 119 47, 128 38, 137

7, 18 58, 124 49, 133 39, 143

7, 19 60, 129 50, 139 41, 148

7, 20 62, 134 52, 144 42, 154

7, 21 64, 139 53, 150 43, 160

7, 22 66, 144 55, 155 44, 166

7, 23 68, 149 57, 160 45, 172

8, 8 49, 87 43, 93 38, 98

8, 9 51, 93 45, 99 40, 104

8, 10 53, 99 47, 105 41, 111

8, 11 55, 105 49, 111 42, 118

8, 12 58, 110 51, 117 43, 125

8, 13 60, 116 53, 123 45, 131

8, 14 63, 121 54, 130 46, 138

8, 15 65, 127 56, 136 47, 145

8, 16 67, 133 58, 142 49, 151

8, 17 70, 138 60, 148 50, 158

8, 18 72, 144 62, 154 51, 165

8, 19 74, 150 64, 160 53, 171

8, 20 77, 155 66, 166 54, 178

8, 21 79, 161 68, 172 56, 184

8, 22 82, 166 70, 178 57, 191

9, 9 63, 108 56, 115 50, 121

9, 10 65, 115 58, 122 52, 128

9, 11 68, 121 61, 128 53, 136

9, 12 71, 127 63, 135 55, 143

9, 13 73, 134 65, 142 56, 151

9, 14 76, 140 67, 149 58, 158

One-sided P-value

0.025 0.005 0.0005

Two-sided P-value

n1, n2 0.05 0.01 0.001

9, 15 79, 146 70, 155 60, 165

9, 16 82, 152 72, 162 61, 173

9, 17 84, 159 74, 169 63, 180

9, 18 87, 165 76, 176 65, 187

9, 19 90, 171 78, 183 66, 195

9, 20 93, 177 81, 189 68, 202

9, 21 95, 184 83, 196 70, 209

10, 10 78, 132 71, 139 63, 147

10, 11 81, 139 74, 146 65, 155

10, 12 85, 145 76, 154 67, 163

10, 13 88, 152 79, 161 69, 171

10, 14 91, 159 81, 169 71, 179

10, 15 94, 166 84, 176 73, 187

10, 16 97, 173 86, 184 75, 195

10, 17 100, 180 89, 191 77, 203

10, 18 103, 187 92, 198 79, 211

10, 19 107, 193 94, 206 81, 219

10, 20 110, 200 97, 213 83, 227

11, 11 96, 157 87, 166 78, 175

11, 12 99, 165 90, 174 81, 183

11, 13 103, 172 93, 182 83, 192

11, 14 106, 180 96, 190 85, 201

11, 15 110, 187 99, 198 87, 210

11, 16 114, 194 102, 206 90, 218

11, 17 117, 202 105, 214 92, 227

11, 18 121, 209 108, 222 94, 236

11, 19 124, 217 111, 230 97, 244

12, 12 115, 185 106, 194 95, 205

12, 13 119, 193 109, 203 98, 214

12, 14 123, 201 112, 212 100, 224

12, 15 127, 209 115, 221 103, 233

12, 16 131, 217 119, 229 105, 243

12, 17 135, 225 122, 238 108, 252

12, 18 139, 233 125, 247 111, 261

13, 13 137, 214 125, 226 114, 237

13, 14 141, 223 129, 235 116, 248

13, 15 145, 232 133, 244 119, 258

13, 16 150, 240 137, 253 122, 268

13, 17 154, 249 140, 263 125, 278

14, 14 160, 246 147, 259 134, 272

14, 15 164, 256 151, 269 137, 283

14, 16 169, 265 155, 279 140, 294

15, 15 185, 280 171, 294 156, 309
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adjustment for clustered designs 423–4
adjustment, other (loss to follow-up,

interaction, confounding) 423
formulae 417–23
principles 413–17
table of formulae 420–1

sampling distribution 31, 39, 41, 59–60, 151–2
sampling error 31
sampling scheme
on basis of time 410
frame 409
multi-stage or cluster 356, 410
simple random 409
stratified 410

systematic 409
two-stage 410

sampling variation 4, 9, 38–41, 59, 139, 151
sandwich variance estimate 354

see also robust standard errors
scatter plots 26–9, 87
score 312
score test 309, 311–12
score variance 312
screening tests 431
second moment 110
selection bias 429
sensitivity 430–1
Shapiro–Wilk test 111, 112
sign test 345
significance level see P-value
significance (hypothesis) test 71–3

see also P-value
skewed distribution 20, 120
skewness 109–10
slope of the line 88
small study effects 384
sources of heterogeneity 381
Spearman’s rank correlation 345, 349–50
specificity 430–1
square root transformation 125
standard deviation 31, 35–7

calculating from a frequency distribution
37–8

interpretation 37
of the points about the regression line 91
standard error 38–41, 254, 302, 305
of difference between two means 60
of difference between two proportions 152
of log ORMH 183
of log proportion 157
of log rate ratio 241
of log risk ratio 155, 157
of log RRMH 246
of mean 39, 51
of proportion 143
of rate 237
robust 343, 353–4, 356, 359–60, 366
of standardized proportion 266
of standardized rate 266

standard normal deviate (SND) 45, 62
see also z-test

standard normal distribution see normal
distribution

standard population 263
standardization 263–71

direct 264–7
indirect 264, 268–71

standardized
means 264
mortality (or morbidity) ratios (SMRs) 264,

268–70
residuals 115

step function 21, 278
stepwise selection procedures 341
stereotype model 213
strata 180, 205, 410
stratification 129, 180–3, 225, 243
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Student’s t distribution see t distribution
subgroup analyses 467
sum of squares 81

regression 96
residual 81, 84, 96, 111
total 96

supported ranges 300–1
see also likelihood ratio

survival analysis 225, 226, 272–86
choice of time axis 290–3
Cox regression 287–94
parametric models 294

survival curve 272, 275
confidence interval 276, 278
Kaplan–Meier estimate 276–8

survival probability at time t 277
survival studies 225
survivor function 272
symmetrical distribution 20
systematic reviews 5, 7–8, 372

t-distribution 54
percentage points of 473
two-sided P-values for 474–5

t test
paired 69–70, 85
unpaired 66–7

table see contingency table
tail see frequency distribution
target population 10
Taylor series expansion 157
tertiles 25
test dataset 342
test statistic 62, 309

see also hypothesis test
general form 73–4

third moment 110
threshold values 12–13
time periods 261
time trends, displaying 29–30
transformations 31, 55, 118–28

change of units 37
choice of 125–6
Fisher’s 95–6
logarithmic 113, 118–24, 312
power 125
reciprocal 125
square-root 125
z-scores 45, 49, 118, 126–8

transformed variable 157
treatment group 14, 58, 72, 148

see also exposure variable
trend test 258

see also dose–response relationship
two-sided P-value 63, 73
two-stage sample 410
type I & II errors 425

unbalanced design 85
unexposed (baseline) group 104, 198, 256
uniform distribution 21
unimodal distribution 20
univariable analyses 461–2

see also crude association
unpaired t test 66
untransformed variable 157
upper quartile 23
upper tail of the distribution 20

vaccine efficacy 150
validity

�2 test for 2 � 2 table 168–9
external 399
internal 400
Mantel–Haenszel methods 185
McNemar’s �2 test 218

variability, underlying 429
variable 10, 35

displaying association between two 25–9
outcome cf exposure 13–14
types of 10–13

variance-ratio test 81
variation

between-cluster 363
between-person 69
extra-linear 331
sampling 4, 9, 38–41, 59, 139, 151
within-cluster 363

Wald test 195, 309, 310–11, 313
cf likelihood ratio tests 313–14, 318–19

Weibull models 294
weighted average 180, 265, 375
weighted kappa statistic 437

link between intraclass correlation coefficient
and 439

Welch test 67
Wilcoxon matched pairs signed rank test, critical

values 479
Wilcoxon rank sum test 347–9

critical ranges 480–1
Wilcoxon signed rank test 344–7
within-cluster variation 363
within-person differences 69
Woolf’s formula 164

x-variable 14
see also exposure variable

y-variable 14
see also outcome variable

Yates’ continuity correction 168

z statistic 254
z-score 45, 49, 118

reference curves and 126–8
z-test

for difference between two means 61–3
for difference between two proportions 152–3,

216
for odds ratio 164
for population proportion with a particular

value 144–6
for risk ratio 158
for rate ratio 242–3
see also Wald test
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